
The State of
Crowdsourced
Security in 2019

Over the last few years we saw mega-bugs like ETERNALBLUE, Double Kill, Meltdown, Spectre, and
the vulnerability in Apache Struts2 — which was responsible for the Equifax breach — just a few
examples of bugs that were exploited in ways that made headlines and left many systems, users and
companies devastated.

It’s not all bad news though: What doesn’t always hit the headlines are the breaches that never
were — the stories of companies who “hacked themselves first” and drove up the cost of exploiting
vulnerabilities in their systems by rewarding ethical hackers to identify and disclose these flaws to
them, enabling these organizations to fix them before they could be exploited.

It is clear that there is no shortage of vulnerabilities to find. In the last
year, Bugcrowd saw a 92% increase in total vulnerabilities reported
over the previous year. The average payout per vulnerability increased
this year by a whopping 83%, with average payouts for critical
vulnerabilities reaching $2,669.92 — a 27% increase over last year.

Intro: State of Security in 2019

The global security threat outlook evolves with each new year. New technological innovation brings new
attack vectors, increasing the number of ways that known and unknown vulnerabilities can be exploited,
potentially causing damage to everyone from large enterprises to small businesses and individuals.

Introduction: State of Security in 2019

Methodology

Key Findings

Priority One: Critical Bugs

State of Bug Bounty

Getting Sh*t Fixed: Incident Response Plan

Inside the Mind of a Hacker

Implications

Appendix

1

2

3

4

10

12

15

19

20

Table of Contents

PRIORITY ONE | 1

For CISOs, it can be hard to measure the risk, money, time, and reputational cost of a breach, but as the
crowdsourced security market matures we’re starting to see some consistent themes emerging from our
customer’s success stories:

Bugcrowd’s Priority One Report analyzes proprietary platform data collected from thousands of
crowdsourced security programs, many hundreds of thousands of vulnerability submissions, and tens
of thousands of hours applied by the Bugcrowd bounty management teams since 2012. The report is a
holistic, data-driven, and industry-segmented look at crowdsourcing adoption, its economics, the whitehat
hacker community, and the vulnerabilities.

Last year, our Crowd — the community of
hackers, researchers, and pentesters on the
Bugcrowd’s Crowdcontrol platform — identified
the same Struts2 vulnerability that attackers
exploited to breach Equifax for one of our
Fortune 500 financial services customers. As a
result, this global company reduced its exposure
window from months to days, and averted a
similar outcome at a tiny fraction of the $1.4B
Equifax ending up paying.

Richard Rushing, CISO of Motorola Mobility,
also put a price on it:

“Bugcrowd saved us $60 million from a single
vuln, simply because we’ve avoided major data
breaches in the eyes of our customers.”

These are just a
couple of the real-

world examples of the
ROI that comes from

harnessing the power
of the Crowd.

Methodology

Total payouts increased 83% year over year.

The average payout for a critical vulnerability in 2019 is $2,669.92, a 27%
increase year over year.

In the first half of 2019, we saw a 29% increase in the number of
programs launched versus the same time the year before and a 50%
increase in public programs launched

 Why: More companies are reaching security maturity and taking their programs public as a
 part of their corporate social responsibility on the Internet.

Submissions have increased 92% overall, with submissions on IoT targets
increasing more than any other at 384%.

 Why: More IoT targets + more security researchers specializing in IoT = more submissions.
 Unfortunately, the issue of systemic vulnerability in the IoT space is still a very real problem.

In line with this, payouts on IoT targets were second highest, following
payouts on web which remained highest.

Key Findings

2 | PRIORITY ONE

PRIORITY ONE | 5

There was a major shift in vulnerability classes found by security researchers in 2018. Nearly 90% of the
critical and high vulnerabilities found in 2017 were classes that we have traditionally seen year in and year
out. In 2018, the focus shifted away from easier-to-find bugs and low hanging fruit.

Why was that?

Looking at the data, 4 out of 5 of the top VRT classes for 2018 revolve around vulnerabilities that are
difficult, if not impossible for any machine to find. Broken Access Controls, Sensitive Data Exposure,
Server Security Misconfiguration, and Broken Authentication & Session Management are systemic issues
with critical impact, and very few programming frameworks out there that protect against them. The ones
that do are far from perfect.

Given the volume of web and API properties Bugcrowd works with, it’s no surprise that the top
5 vulnerabilities our Crowd discovered over the past year are all on the OWASP Top 10 list. Big
vulnerabilities elicit big headline grabbing breaches that affect millions of consumers. In reality, the
vulnerabilities that lead to these big breaches are often much more nascent. The big bugs we see
most often on our platform are also the most common. What’s more interesting is the way our Crowd of
whitehat hackers works to identify these vulnerabilities, chain them together, and create a greater impact
through different methodologies and attack scenarios.

While the vulnerabilities in IoT devices – refrigerators and DVRs – capture our attention for their novelty
and fear factor, they are still and by far outnumbered by vulnerabilities in web applications. In fact, web
application vulnerabilities have always been the top submitted vulnerabilities across our programs and
correspondingly account for the highest percentage of awards paid.

But what are the top submitted vulnerabilities on web applications?
On the next page is a list of the top vulnerabilities we've seen, by
volume, over the last 12 months.

Priority One: Critical Bugs

Top Vulnerabilities of 2018-2019
(OWASP Top 10)

TOP 5 VULNERABILITIES
OVER THE LAST YEAR

1. Broken Access Control

2. Sensitive Data Exposure

3. Server Security
Misconfiguration

4. Broken Authentication
& Session Management

5. Cross-Site Scripting

AVERAGE CRITICAL PAYOUTS BY TARGET

Unvalidated Redirects
& Forwards → Open

Redirect → GET-Based

5

Cross-Site Scripting (XSS) →
Reflected → Non-Self

1
Broken Access Control
(BAC) → Insecure Direct

Object References (IDOR)

3
Cross-Site Scripting (XSS)
→ Stored → Non-Privileged

User to Anyone

2
Broken Authentication

& Session Management →
Privilege Escalation

4

Broken Authentication & Session
Management → Failure to Invalidate Session →

On Password Reset and/or Change

7
Cross-Site Request Forgery
(CSRF) → Action-Specific →

Authenticated Action

6

Broken Authentication
& Session Management →

Authentication Bypass

9

Server Security Misconfiguration
→ Mail Server Misconfiguration →
Email Spoofing on Email Domain

8

Broken Authentication & Session
Management → Failure to Invalidate Session →

On Logout (Client & Server-Side)

10

While it likely won’t surprise most that cross site scripting (XSS) remains number one, it’s important for
understanding the threat landscape. Three of the top ten bugs (Access Controls and Authentication
related) are predominantly classified as P1, the most critical submission on Bugcrowd.

If you step away from sheer volume and begin to look at criticality, the Bugcrowd data for critical P1 and P2
vulnerabilities yields other more insidious bug classes as well:

Understanding the most common vulnerabilities is important for the defenders who continuously face the
challenge of making remediation decisions around vulnerabilities without access to all of the facts, and
a key point of learning for bug hunters, especially those who are just getting started with bug hunting.
It’s also why the VRT (Vulnerability Rating Taxonomy) is so important for quickly determining business
impact, and ensuring the expectations of both bug hunter and defender are kept aligned.

Server Side Request Forgery

Insecure Direct Object Reference

XML External Entity Injection

Security Misconfigurations in:
 AWS S3 buckets
 Git repo leakage
 Subdomain takeovers
 API keys and default credential exposure

Variants of command and code injection (RCE)

Blind XSS/Stored XSS & XSS + CSRF chains
leading to full user account takeover

Researchers finding critical bugs are no longer going
after things like XSS, CSRF, and SSI as those are
fairly easy to find by many scanners out there today.
This major shift is signaling a new era of deep testing
like we’ve never seen before. Many organizations
out there today have employed scanners and the
like to protect against very easy to find, low hanging
fruit. But where do you go from there once all of that
automation is set up?

While penetration testing will still be done, how will
that fit into your SDLC? Organizations are moving
to much more agile methodologies to keep up with
their development, but are still using the security
equivalent of waterfall when it comes to relying on
traditional penetration testing to help ensure their
always-evolving environments are kept secure.
It’s fairly obvious that mixing the two together will
inevitably introduce lapses in coverage and efficacy.
With this in mind, customers are now moving towards
more continuous models of crowdsourced pen testing
with the Next Gen Pen Test to help keep up with the
changing landscape.

REPUTATIONAL COST OF A BUG:
WHY MOTOROLA TURNED TO
CROWDSOURCED SECURITY

Motorola Mobility is one
of the world’s largest
consumer electronics and
telecommunications companies. As
part of its robust security program
Motorola runs both private bug
bounty and vulnerability disclosure
programs. Motorola not only
recognized the need to connect
with the security researcher
community to find critical
vulnerabilities quicker and more
efficiently, they also recognized the
reputational cost of a vulnerability
found by the wrong crowd.

“With all the security technology
and process that we have in place
at Motorola we always find bugs
when product goes live. With one
critical submission, Bugcrowd
saved us close to $60 million,
simply because we’ve avoided
major data breaches in the eyes of
our customers.”

Richard Rushing, CISO
CISO of Motorola Mobility

Learn more about why Motorola
turned to Bugcrowd here.

PRIORITY ONE | 9

CRITICAL BUGS: NOW & IN
THE FUTURE

https://www.bugcrowd.com/product/platform/vrt/
https://www.owasp.org/index.php/Server_Side_Request_Forgery
https://www.owasp.org/index.php/Top_10_2007-Insecure_Direct_Object_Reference
https://www.owasp.org/index.php/Top_10-2017_A6-Security_Misconfiguration
https://www.bugcrowd.com/customers/motorola/

Up and to the right. Adoption continues to climb with more companies across industries adopting
crowdsourced security programs. What we coined as the “state of bug bounty” five years ago has
become much broader. Crowdsourced pen testing and vulnerability disclosure are growing at breakneck
pace and the number of companies running programs for multiple years has resulted in a marked
increase in the number of public programs.

The market has matured a lot in the last seven years. The proof is in the stats below.

Over the last year, payouts on web targets remained the highest. It’s no surprise. The web is still the
largest attack surface out there, and still accounts for 90% of all submissions. But others are gaining
traction quickly. In the last year IoT payouts increased 384%, Mobile 141%, and API 101%. Year over year we
saw an 83% increase in payouts — a result of increased, high priority submissions, as well as an increase
in the number of programs with these targets in scope.

92% increase in total vulnerability submissions

State of Bug Bounty

ADOPTION (PROGRAMS BY INDUSTRY)

42%

71%

50%

44%

26%

13%

YoY across industries

increase in Financial Services

increase in Retail

increase in Healthcare

increase in Technology

increase in Automotive

TOTAL PAYOUTS YOY (2017 – 2018)

83% increase

AVERAGE PAYOUTS ON CRITICAL (P1 + P2)

27% increase
AVERAGE PAYOUT P1 – P4

22% increase

PRIVATE

PUBLIC

PROGRAMS RUNNING TODAY

TOP TARGETS BY NUMBER OF SUBMISSIONS 2018 SUBMISSIONS INCREASED BY TARGET 2018
74%

WEB

↑99%
↑141%

↑101%

↑384%

MOBILE

API

IOT

Web
Mobile

API

IoT
90%

4%
5% 1%

26%

PRIORITY ONE | 11

We often refer to a vulnerability disclosure program as a neighborhood watch for the internet. Still, having
a channel to receive vulnerability submissions from external researchers also requires a way to respond to
these submissions. Below is a helpful checklist to help build out a response program.

The first step to proper vulnerability or incident response starts with taking all reports seriously
and fully understanding the issue. Ignoring researcher submissions wastes time and leaves
clients vulnerable longer. This isn’t usually done maliciously; most often it’s a case of the
security team not fully understanding the magnitude of the report, or having adequate time
to ensure everything gets the attention it deserves. It’s not difficult to shift the narrative with a
managed vulnerability disclosure program.

 In short, take all reports seriously until you’re 100% clear on impact. There have been
 no shortage of findings that take a while to understand — be open and willing to have
 a conversation to completely understand what’s being reported, and why.

Once remediated, go back to the researcher and advise them as such — maybe they can find
a way around that hasn’t been considered by your team. Thank them again for their work, and
let them know that you look forward to their future findings.

Rinse and repeat.

Thank and reward the reporting researcher. Communication here is key. Make sure they know
they’re valued. This is done by putting in the time, effort, and dollars. Be sure to tip if it’s a
particularly valuable finding!

After a critical issue has been identified, it’s important to think beyond just filing a ticket and
waiting for engineering to fix it. While it might be out of your immediate scope, it’s now your
responsibility to make sure the vulnerability gets remediated in a timely manner. Track down all
the relevant parties, explain the risk, and escalate as needed. Critical findings should never get
lost in the backlog, and security is no place for politics to endanger the trust of your end users.

 This is another valuable place where proper security training comes into play. If the entire
 organization is aware of the risk and is onboard with making security a priority, then it makes
 it a lot easier to get things fixed more quickly.

Validate the fix. Often engineers may not fully understand what they’re fixing, or why. Or maybe
it was outsourced to someone who is three levels abstracted from where it was found, and
they’re just looking to make the POC go away. The fix may be partial (blacklisting one or two
offending characters), uninformed, or ineffective altogether. Be sure the fix is sufficient, try to
break it, review the code, and send it back if it’s incomplete.

Increase your scope and rewards. Having avoided disaster, now more than ever it’s important
to double down on the reality that having a crowdsourced program can (and does) help you
identify these issues before they’re otherwise exploited in the wild. Make sure researchers are
testing your full attack surface, and are heavily incentivized to do so.

Getting Sh*t Fixed

1 5

7

3

2

4

6

PRIORITY ONE | 1312 | PRIORITY ONE

As a customer’s program matures and their attack surface hardens, we often advise increasing scope and
rewards. Once a process is established, and DevSecOps is in sync, finding and fixing bugs (or going from
“oh sh*t” to fixed) becomes standard practice.

A recent example of this was a customer looking to put one of their applications to the test. To incentivize
researchers to put in the time and effort, we recommended increasing rewards for the most critical bugs.
High incentives, especially on a hardened application, ensure that if something is found, it’s critical.

On top of customer rewards and bounty payouts, we have a set of additional incentive programs to keep
our researcher engaged and excited to participate in Bugcrowd programs. In 2018 we paid more than
$150,000 via our incentive programs to our Crowd. In addition to our MVP and Hall of Fame programs, in
2019 we’ve launched 2 new programs to reward our Crowd for all the amazing work they do: P1 Warriors
and Bounty Slayers.

Both programs reward and recognize the valuable work our researchers do to make Bugcrowd’s programs
successful and help make the Internet safer for everyone! In addition, we modified our existing MVP and
Hall of Fame programs to continue to challenge and encourage our researchers to reach new heights.
As a result, we are projected to invest 50% more than last year on incentive programs for our Crowd.

INCENTIVIZING AN "OH SH*T" BUG IN FINTECH

With this in mind, the customer increased their high reward to $20K
— and it worked. Within two weeks, a researcher had identified a
vulnerability that allowed takeover of user accounts. In the case of
this app, this meant that a bad actor could effectively steal substantial
amounts of money from other users. The customer quickly accepted,
rewarded, and created a JIRA ticket for it, enabling them to fix a
significant vulnerability before it impacted users.

0 25.627

Snapshot: Inside the Mind of a Hacker

PRIORITY ONE | 15

We recently asked some of Crowd how they got started and what advice they’d give others. The
overwhelming response was to read blogs and follow the advice of other bug hunters. The idea that a
hacker is someone sitting alone in front of a computer terminal is inaccurate. What we’ve learned over
the last decade of working with this community is that it’s all about giving back, about working together
to make the internet a safer place. In fact, by collaborating, these whitehat hackers are able to chain
together techniques to find more, critical vulnerabilities — ones they might not find on their own. Our
2019 Inside the Mind of a Hacker report found that nearly 85% of security researchers are either already
collaborating or looking to collaborate on bug bounty submissions in the future.

The same idea applies to how they learn. Today, nearly half of whitehat hackers report that they learned
how to hack via online resources. As such, it’s important to engage with hackers and up-and-coming
professionals in the way they prefer to learn. After all, these hackers will go on to use these skills to hack
organizations ethically, identifying weak spots before the bad guys do.

Launched in 2017, LevelUp is our free online InfoSec conference series featuring leaders in the hacking
and crowdsourced security space sharing their best practices, strategies, and research to help level up
their fellow bug hunters.

Check out our videos from all of our LevelUp conferences on on YouTube and on Bugcrowd University.

MENTORSHIP STORY: TH3G3NTL3MAN AND ISLAM

We recently sat down with bug hunter, Islam (@SamExploit) about how he got started and how his mentor
Majd Aldeen Atiyat (@th3g3ntl3man) helped him on his journey.

WHY DID YOU GET STARTED?
My manager th3g3nt3lman kept telling me about bug bounty and what does it mean, how it changed his life
and how it can change my life and others, so with this encouragement I said “why not?”

HOW DID YOU GET STARTED?
"After reading and watching a lot of videos about web penetration testing and bug bounty, I asked my mentor
[if he wanted] to hack together twice a week so I could see how he thinks and how he approaches targets
since he is a well known hacker and has a good reputation. He spent time explaining the Bugcrowd platform
and how to use it, and explained how good they are and how much he likes the team, why he hacks mainly
on their platform. By our third meeting I found multiple P1s and P2s and my life changed at that time."

WHAT MOTIVATES YOU TO HELP OTHER BUG HUNTERS/WHY IS IT IMPORTANT?
"When you feel the change that bug bounty has on your life — mentally and financially — you have to also
help others who have the skills but don't know how to use them. The sweetness of finding a bug and getting
rewarded for your efforts is something beautiful."

WHAT ADVICE WOULD YOU GIVE TO OTHERS GETTING STARTED?
"You have to spend time working on your skills and reading--there are a lot of online resources. Spend time
with experienced and wise people who can guide you to the right path, and believe in yourself: you can do it."

When asked why Majd Aldeen Atiyat (aka th3g3nt3lman) mentors, he said:
“It’s a responsibility, giving back to the community is a must, even though I had experience, I was junior in that
area. A lot of amazing guys helped, guided and encouraged me to be the person I am today, so I have to
share this experience with others and let them know bug bounty is a life changer.”

THE COMMUNITY THAT HUNTS TOGETHER

“Focus on basics and report quality. Read other researcher's blogs
 and bug bounty tips.”
NIKHIL

“Use your time to read and sharpen your skills before thinking about
rewards, there are a lot of blogs and sites that can help you get started.
Believe in yourself and always ask questions to other people in the
community that will guide you and help you to move along the right path.”
MAJD ALDEEN ATIYAT (AKA TH3G3NT3LMAN)

16 | PRIORITY ONE PRIORITY ONE | 17

MENTORS

“I happen to be inspired by Eric (@todayisnew) because of his dedication and motivation to pentest or to
help companies secure for his family.”

"I was once a beginner and I find it very hard to start when you don't have any resources or someone
who can help and guide you — that is why I decided to be part of the journey of many aspiring bug
hunters as I can."
KENT BAYRON, BUG HUNTER

https://www.bugcrowd.com/resources/guides/inside-the-mind-of-a-hacker-2019/
https://www.bugcrowd.com/resource/inside-mind-hacker/
https://www.bugcrowd.com/blog/bugcrowd-announces-levelup-virtual-hacking-conference/
https://www.youtube.com/playlist?list=PLIK9nm3mu-S61oMP7pie5d2t1Aah41Fji
https://www.youtube.com/playlist?list=PLIK9nm3mu-S6YoUjPrKtmBliUS4J5YOGl
https://www.bugcrowd.com/hackers/bugcrowd-university/

DISCLOSE.IO/SAFE HARBOR

In 2018, Bugcrowd launched Disclose.io, an open-
source safe harbor project. Over the past year nearly
100 companies have adopted this language in their
crowdsourced security programs on Bugcrowd. To help
move this along Bugcrowd has turned safe harbor on as a
default for all new programs launching.

In early 2019, Bugcrowd rebooted “The List,” a community-
powered disclosure directory including bug bounty and
vulnerability disclosure programs across the web that
a) invite good-faith hackers to help and b) go the extra
mile by offering safe harbor. In the short time The List has
been published in its new form, we have had over 100
additions by the community, and several contributions and
discussions on usability, scope, schema, and corrections.

The adoption of safe harbor by industry leaders is
paramount to the success of crowdsourced security,
and for the future of hackers and organizations working
together to make our digitally-connected world safer.

Our goal is to have every organization offer a proactive
vulnerability disclosure policy, and for that policy to include
safe harbor for good-faith hackers. Here’s what you can do:

One thing that hasn’t changed this year is the prevalence of web vulnerabilities, which are still on the rise.
This trend will continue over the next year, although these vulnerabilities might come in different flavors
as widespread migration to the cloud and mass adoption of IoT devices. Despite years of predicting this
trend, security is still lagging behind in this area as it has not been built in at the core. For this reason,
we’ll have to go backwards, looking for “easy” bugs, especially in these newer computing environments.
For the next few years we’ll likely see a rise in vulnerabilities identified in these environments. This past
year we hosted a car hacking bug bash in Louisville, which perfectly highlights this trend. In just two
days Bugcrowd security researchers, hackers and pen testers found over 15 critical and high severity
vulnerabilities on vehicles.

Managing assets is also going to come to a head in 2019. This is a basic and fundamental issue that
application security professionals continue to grapple with year after year. The bigger the organization
and the more companies it acquires, the harder it is to manage assets. Most bugs are not found in
flagship applications, but in obscure domains, apps, etc, that have been left behind and unaccounted
for. Large Fortune 500 companies have a really hard time with this because they just don’t know what
they have on the internet. According to Enterprise Strategy Group, Large Enterprises have nearly 1,500
apps in production on average, but only 58% of those are protected. Even for smaller companies, lots of
organizations have a hard time knowing exactly what they own – old internal apps, APIs, etc. The more we
move to the cloud, the harder it is to track.

Moving to new technology environments is going to require more skill and education to combat the new
vulnerabilities that may appear, as well as increased crowdsourcing to keep pace with the growing attack
vectors. The cybersecurity skills shortage is growing at an alarming rate. In the years ahead we’ll need
to double down on recruitment and education, building security community and encouraging diversity.
Bugcrowd University was created to teach basics of hacking and bug bounty hunting to address the
skills shortage by introducing new researchers to the crowdsourced security field and upleveling the
skills of the whitehat hacker community across the board. And this community continues to grow, and find
critical bugs. In the last year our Crowd found 92% more vulnerabilities than the year before. With an 83%
increase in payouts, it’s clear that more, critical bugs are being found by a growing, engaged community
of security researchers, whitehat hackers and pen testers.

We’re going to see more crowdsourcing. With the model proven successful, we'll see more competitors
crop up, and we will see new inroads into different crowdsourced security applications like forensics,
threat hunting, and more. Next year is going to be about the individual contributors and tracking skill sets.
We will eventually get to a point where a security professional doesn’t have to take a consultancy job
anymore. They can work from anywhere.

Submit PRs to include missing programs on The List – get them the
praise they deserve and get credit for helping this movement out

If your organization runs a vulnerability disclosure program, consider
adding the disclose.io safe harbor terms.

If your organization doesn’t run a vulnerability disclosure program, talk
to them about getting a policy, an intake channel, and a vulnerability
coordination/remediation process established. #ittakesacrowd

What's Changed Since Last Year

PRIORITY ONE | 19

SEE A PROGRAM MISSING FROM THE LIST?

https://www.bugcrowd.com/bug-bounty-list/
https://www.bugcrowd.com/resources/guides/esg-research-ciso-security-trends/
https://github.com/disclose/disclose

Among the oldest and most dangerous attacks aimed at web
applications, injection vulnerabilities directly access stored
data and can lead to data theft, data loss, loss of data integrity,
denial of service, as well as full system compromise, among
others. Listed as the number one risk in the OWASP Top
10, these dangerous vulnerabilities are typically caused by
insufficient user input validation — i.e. Data from the outside of
the application isn’t checked and “sanitized” on it’s way in to the
application, leading to unintended consequences.

Injection vulnerabilities such as SQL Injection (SQLi) remain in
the top spots due to their prevalence in legacy applications.
The enormity of the attack surface, ease of introduction of these
vulnerabilities into codebases, and the amount of time these
vulnerabilities have been around makes them common targets
for veteran attackers and newbies alike.

There is good news in this as well. The commonality of these
vulnerabilities means that they are easy for defenders to identify.

Like SQL Injection, Cross-site Scripting has made every OWASP Top 10 since the list’s inception. Number
4 on the list, XSS is similar to SQL and injection vulnerabilities in that the core issue is the sanitization of
data In this case the vulnerability is caused by the data going out of the application, as opposed to the
data going in. A cross-site scripting vulnerability may be used by attackers to inject malicious client-side
scripts that exploit the user’s trust in the vulnerable domain, and allow for an attacker to execute a number
of attacks against the victim including session hijacking, re-writing page content, redirection, and in some
cases (particularly when chained with other misconfigurations) can lead to a complete account takeover.

Another big bug category that tends to hit hard, especially as organizations migrate to the cloud, are
security misconfigurations. We see a lot of incorrectly configured cloud environments, such as in AWS and
Azure—with clients leaking data due to infrastructure misconfigurations and incorrect implementations
around data storage and setup. Another instance of this class is also if source code is managed in Github
or other SVN/source repositories. With some easily misconfigured permissions, virtually anyone on the
internet could potentially have access to their repositories and sensitive data.

The most famous version of XSS, and a solid explainer, is the SAMY Myspace worm by Samy Kamkar.
This wormified exploit leveraged a stored XSS to trigger actions in the visitors browser when they visited
an infected Myspace profile, ultimately leading to millions of Myspace users proclaiming that “SAMY IS MY
HERO” over a 12-hour period.

The most common types of XSS attacks are stored (i.e. persistent) and reflected (i.e. transient). In a
persistent XSS attack the injected script is permanently stored on the target servers, such as in a message
forum, visitor log, username/address field, or comment box — in the example of the SAMY worm, the
payload was stored in the comments of a Myspace profile.

In a reflected attack the injected script, usually via a query string parameter, is returned by the application
and executed within the context of the victim’s browser — such as in an error message, search result, or
any other response that includes some or all of the input sent to the server as part of the request. This
allows the attacker to execute arbitrary javascript on behalf of the victim.

SQL INJECTION: THE
GRANDFATHER OF WEB
VULNERABILITIES

One of the most dangerous
vulnerabilities in the web is
also one of the oldest. First
discovered by Jeff Forristal
(aka Rain Forest Puppy)
in 1998, SQL injection has
remained one of the top
security vulnerabilities
since the 90s when most
websites were still using
simple Microsoft Access-
based databases — and
no real security properties
protecting them.

PRIORITY ONE | 21

INJECTION

XSS

Here’s an overview of the OWASP Top 10, why these vulnerabilities made the list and why many of them
remain on the list, despite being known for decades.

Appendix

20 | PRIORITY ONE

Ranked number two on OWASP’s 2017 Top 10: Broken Authentication and Session Management.
Essentially if authentication and session management are not implemented correctly, attackers can
compromise passwords, keys, or session tokens. In other words, attackers look for vulnerabilities in the
authentication or session management functions to impersonate users or otherwise gain unauthorized
access. As common as they are difficult to spot, broken authentication can result in full account takeover,
privilege escalation, authentication bypasses, and other session related compromises.

Session management is a notoriously difficult problem for most organizations — especially those that
store Personally Identifiable Information (PII), Protected Health Information (PHI), or even Payment Card
Industry (PCI) data. Any compromise of data could spell disaster as seen with recent data breaches and
could have long lasting negative effects on the brand. Let’s not forget that GDPR will have even larger
effects on organizations operating in the EU.

BROKEN AUTHENTICATION

SECURITY MISCONFIGURATION

https://en.wikipedia.org/wiki/Samy_(computer_worm)

Number 6 on OWASP’s 2017 Top 10, Security Misconfigurations are incredibly common, dangerous, and
at this point responsible for a disproportionate number of breached records in the form of S3 buckets,
publicly accessible database backups, and other similar issues. Improper configurations lead to a number
of issues, giving attackers unauthorized access to system data or functionality, and sometimes resulting
in complete system compromise. One of the biggest culprits of this flaw is failing to change default
passwords. There is a very easy fix for this potentially very big problem: turn everything off by default.
Disable admin interfaces, debugging, and use of default accounts and passwords.

When you get into cloud, it’s a whole new domain of technology, learning AWS and the associated
technology stack is like learning a new language, you need a Rosetta stone for it sometimes. You need
to be dedicated to it, and if you don’t spend the time, it’s easy to misstep. As we continue to move to new
technology environments, we’ll continue to see these bugs. These are the easiest vulnerabilities to find
that have the largest impact on organizations. Having a healthy asset management plan is key to keeping
this under control.

22 | PRIORITY ONE PRIORITY ONE | 23

Number 3 in OWASP’s 2017 Top 10 is Sensitive Data Exposure. Sensitive Data Exposure is exactly what it
sounds like: exposure of sensitive data such as banking, health, PII (social security number, data of birth)
or user accounts, email addresses or passwords. How is this data exposed? There are a few ways: lack
of encryption, failure to prevent browser caching, or even a forgotten or mistaken data upload. Even if the
data is encrypted, weak keys or password hashing techniques can still give attackers access--and access
to this data usually requires a manual attack: man-in-the-middle, stolen keys, or directly from a server while
in transit.

What can consumers do? While most consumers will not know how to identify these issues, there are
things to look for, such as whether or not the vendor has a vulnerability disclosure program. Given
the frequency that this type of issue is found in our programs, it’s likely that if a vendor is running a
crowdsourced security program the issue has already been found…and fixed.

On a practical level, there are a few things consumers can do the keep themselves secure. The first
is two-factor authentication (2FA). Most services (including ecommerce sites) support 2FA. Activate it
wherever you can, especially on your personal email and social media accounts (i.e. the ones which, if
accessed, can be used to reset all your other passwords and gain access to your accounts).

Minimizing password reuse on important services such as financial accounts (and those with critical PII
data) is an important step. A password manager is the perfect tool for this. All of these tools such as
1Password, LastPass, and Keeper Security) have password reuse detection tools. Take advantage of these
and give your internet identity review.

SENSITIVE DATA EXPOSURE

Number 8 on the OWASP Top 10 is Insecure
Deserialization. Occurring when untrusted data is
used to abuse the logic of an application or inflict a
denial of service (DoS) attack.

Serialization operations are extremely common in
architectures that include APIs, microservices, and
client-side MVC. When the data being serialized
and deserialized is trusted (under the control of the
system), there are no risks.

However, when the input can be modified by the
user, the result is an untrusted deserialization
vulnerability.

The Equifax breach serves as a very real world
example of what can happen when attackers
discover insecure deserialization in the wild -- and
why it’s important to patch early and often.

INSECURE DESERIALIZATION

EQUIFAX

One of the most widely discussed
breaches in the last couple of years
was Equifax. The cause of this attack
was exploited a vulnerability in
Apache Struts — the result of unsafe
deserialization in Java. The vulnerability
enabled attackers to inject malicious
code into any server running a Struts
application that uses the popular REST
communication method, and execute it
— exactly what they did with Equifax.

Coming in at number 9 is Using Components with Known Vulnerabilities. While not a vulnerability in and
of itself, this issue is both widespread and preventable -- and highlights the threats from using external
dependencies in an application.

Most developers are focused on securing their own code and often forget about the code they have
imported. In fact, they may not even know about all the code they are running — and the plugins, libraries
and dependencies of that code.

What can you do? Make it your job to be aware of every system you’re using and the security of those
systems. Hold your vendors to a rigorous standard of security, but never assume they’re aware of every
vulnerability. At the same time, pay attention when they do issue patches and apply them quickly.

USING COMPONENTS WITH KNOWN VULNERABILITIES

Number 10 on the OWASP Top 10, Insufficient Logging and Monitoring includes everything from unlogged
events, logs that are not stored properly, and warnings where action is not taken in a reasonable amount
of time. We all know the longer it takes to detect an attack or breach, the greater the potential impact.
This is why this vulnerability is so critical. According to OWASP, “exploitation of insufficient logging and
monitoring is the bedrock of nearly every major incident. Attackers rely on the lack of monitoring and
timely response to achieve their goals without being detected.”

Unlike some of the other vulnerabilities on the list, Insufficient Logging and Monitoring is directly tied to
best practices. To protect your organization ensure login, access control failures, and server-side input
validation failures can be logged with sufficient user context to identify suspicious or malicious accounts,
and held for sufficient time to allow delayed forensic analysis. And don’t forget to establish an incident
response and recovery plan.

INSUFFICIENT LOGGING & MONITORING

XXE is a potent and often misunderstood vulnerability that, when weaponized, has the potential to result
in outcomes as substantial as local file read, or even remote code execution. To exploit XXE an attacker
sends a malformed XML payload, tricking the misconfigured XML parser to return internal or external
resources — often containing sensitive information, such as local files on the machine (or again, in rare
cases, code execution). For this reason it remains on the OWASP Top Ten at number 4.

XXE recently reared its ugly head in an Internet Explorer Zero Day that would have allowed attackers to
steal files from the Windows systems if exploited.

XXE

The simple answer is that nothing is ever 100% “safe” which is why ongoing vulnerability assessment is so
critical. Awareness is key — not only for the vulnerabilities in your own code, but for those in the systems
you use. Know what is in your environment and keep an eye out for issues. When patches are issued,
update immediately.

As far as Apache Struts is concerned, there are public GitHub projects with ongoing research on both
CVE-2017-5638 and CVE-2018-11776, for full write-ups and gory details. Or, check out this proof of
concept which walks through how the CVE-2018-11776 vulnerability could be exploited.

IS APACHE STRUTS SAFE?

Apache Struts has been in the news a lot over the last few years — most notably for the vulnerability that
took down Equifax: CVE-2017-5638.

While CVE-2017-5638 has become synonymous with Equifax, this vulnerability had a much broader
impact as many web applications out in the wild use Apache Struts. This is why vulnerability identification
is so important. A researcher in our Crowd identified CVE-2017-5638 months before the Equifax breach
on one of our customers who is a major worldwide financial services company. As a result, the customer
remediated the vulnerability before a bad actor could take advantage of it. This customer did not end up
on the news and as they say, no news is good news.

PRIORITY ONE | 25

In software applications, one bug that never seems to go away and one of the more risky vulnerabilities
rated in our P1 or P2 VRT category, is the idea of access control bugs. These are really risky and there are
a lot of different flavors of access control bugs. One of the riskiest is insecure direct object reference bugs.

Number 5 on the Top 10, OWASP defines insecure direct object reference bugs “a developer exposes a
reference to an internal implementation object, such as a file, directory, database record, or key, as a URL
or form parameter. An attacker can manipulate direct object references to access other objects without
authorization, unless an access control check is in place.”

For example, if someone has an account and that account has a unique number 75, and if a cyber attacker
sees that in the URL and changes the number to 74, he or she can get access to someone else’s account
— that is an insecure direct object reference bug. Access control bugs are not easy to defensively code
for. These bugs are not protected by any framework or code libraries like many input based vulnerabilities.
As a result, we are going to continue to see this over the next year.

BROKEN ACCESS CONTROL

24 | PRIORITY ONE

https://github.com/immunio/apache-struts2-CVE-2017-5638
https://lgtm.com/blog/apache_struts_CVE-2018-11776
https://github.com/jas502n/St2-057

© 2019

