

Thank you for downloading this HiveMQ eBook. Carahsoft is the master government
aggregator for HiveMQ IoT solutions available via OMNIA, IPHEC, and other contract
vehicles.

To learn how to take the next step toward acquiring HiveMQ’s solutions, please check out
the following resources and information:

For additional resources:
carah.io/hivemq-resources

For additional HiveMQ solutions:
carah.io/hivemq-solutions

To set up a meeting:
HiveMQ@carahsoft.com
571-591-6210

For upcoming events:
carah.io/hivemq-events

For additional IoT solutions:
carah.io/IoT-Solutions

To purchase, check out the contract
vehicles available for procurement:
carah.io/hivemq-contracts

For more information, contact Carahsoft or our reseller partners:

Architecting a Unified
Namespace for IIoT

For more information, contact Carahsoft or our reseller partners:
HiveMQ@carahsoft.com | 571-591-6210

https://carah.io/hivemq-resources
https://carah.io/hivemq-solutions
mailto:mailtoHiveMQ@carahsoft.com
https://carah.io/hivemq-events
https://carah.io/IoTSolutions
https://carah.io/hivemq-contracts

Architecting a
Unified Namespace
for IIoT
with MQTT

eBook
April 2024

Contributors:
Kudzai Manditereza - HiveMQ

TABLE OF CONTENTS

Architecting a Unified Namespace for IIoT

2

Foundations of a Unified Namespace for IIoT..................3

Principles of a Unified Namespace Architecture............. 4

Open Architecture and Standard Data Infrastructure..... 5

Federated Data Governance... 5

Core Components of a UNS.. 6

IIoT Platform for the Unified Namespace........................ 7

Data Persistence for the Unified Namespace.................. 7

Unified Namespace Reference

Architecture with MQTT.. 8

Unified Namespace Reference

Architecture with MQTT Sparkplug.................................. 9

Designing Your UNS Semantic Information Hierarchy.....10

UNS Semantic Data Hierarchy Design Using MQTT 10

Best Practices for MQTT Topic Namespace

Structuring for UNS... 11

Versioning Your UNS

MQTT Topic Namespace ... 12

Designing Unified

Namespace Data Structure... 12

Establishing an Edge Namespace

for All Your UNS Data.. 12

Establishing a Functional Namespace for Your UNS...... 12

The Role of MQTT Sparkplug

in UNS Data Structure... 14

Data and Functional Modeling
for Unified Namespace...15

Designing a Data Model

for the Unified Namespace... 15

Designing a Functional

Model for the Unified Namespace.................................... 17

DataOps for the Unified Namespace................................ 18

Securing the Unified Namespace Architecture for IIoT...19

Authentication and Authorization..................................... 19

Encryption and Secure Communication........................... 19

Client Identifier (ClientID) Management........................... 19

Securing Your MQTT Infrastructure for UNS................... 20

High Availability and Redundancy.................................... 20

Data Governance and Training ... 20

Regular Updates and Monitoring...................................... 20

Conclusion... 21

Foundations of a Unified
Namespace for IIoT

In the manufacturing sector, a significant shift is underway.

Organizations are transforming themselves to use digital

technology not just to support their existing operations but

also to drive and transform their business outcomes by

augmenting their operations with data-driven intelligence.

However, a persistent challenge remains amidst this evolution.

The prevailing view is that to extract value from data, it must

be consolidated from various business divisions into a central

repository, such as a data warehouse or data lake, and then

leveraged to drive an organization's innovation strategy.

This strategy is especially problematic in manufacturing

due to the wide variety of Operational Technology (OT) and

Information Technology (IT) systems with different meanings

and definitions of data. That is, as more data is collected

and stored centrally, the inconsistencies make it increasingly

difficult to make sense of the data, which is detrimental to

advanced analytics that organizations need for intelligent

decision-making.

But that’s just part of the story: more varying data-generating

sources are being connected rapidly across OT and IT domains,

and manufacturing businesses are growing in organizational

complexity, and with it, the need to address more specific

advanced analytics use cases has never been more essential.

To successfully achieve digital transformation on an enterprise

scale, manufacturers need an architectural approach that

facilitates seamless data integration and the extraction of

value, scales effectively with the addition of new data sources

and varying contexts, and enables rapid responses to data-

driven use cases in manufacturing.

The Unified Namespace (UNS) offers an alternative approach

to traditional industrial data architecture. Traditional methods

typically follow the ISA-95 pyramidal network-and-system

architectural model, which relies on propagating data upwards

for centralized storage and subsequent analysis. In contrast,

the UNS approach externalizes contextualized data across

various functional domains into a real-time semantic hierarchy,

establishing a hub and spoke model that serves as a single

source of truth for your business's current state and events.

This eBook aims to build upon the principles introduced in a

previous guide, UNS Essentials, by offering practical guidance

for architecting a UNS for your organization. Read on to learn

more about UNS, how to design a UNS, data and functional

modeling, and how to secure the UNS.

 www.hivemq.com

3



https://www.hivemq.com/mqtt/unified-namespace-uns-essentials-iiot-industry-40/?__hstc=76629258.fd620e01a27a517788ab544878d7e2a9.1701414157090.1701414157090.1701414157090.1&__hssc=76629258.1.1701414157090&__hsfp=3749687059

Principles of a Unified Namespace Architecture

Edge-driven and Domain Ownership

The fundamental concept of a UNS architecture is that for a

manufacturing enterprise to fully leverage decentralized real-

time data sharing, the various components within a specific

functional domain must push data from its source at the

edge into a common data infrastructure. In manufacturing,

these functional domains typically include control, operations,

information, applications, and business. The data exchanged

may include sensor updates, events, alarms, status changes,

commands, and configuration updates. In the edge-driven

principle, the data may only be shared when a change has been

detected in the monitored item, report-by-exception.

By channeling data straight from the originating systems at the

edge into a common data infrastructure — abstaining from the

traditional, tiered approach — edge-driven architecture creates

the notion of a perpetual, real-time representation of your

enterprise's current state and events, effectively creating a

singular, authoritative reference point for your business model.

This architecture model therefore serves as a single source

of truth, where all components participate as nodes in the

ecosystem from which they equally consume information

as much as they publish it. Furthermore, an edge-driven

architecture enhances reliability by eliminating the fragility of

the need for synchronization in systems that rely on request-

response interactions. For example, during communication

disruptions, this design allows data that would otherwise

be missed through request-response models to be stored

temporarily and then resent once the network connection is

reestablished.

Components in each functional domain in manufacturing

are really about one concept of the business, and therefore,

share a common interpretation of data semantics. For

instance, within the control domain, you find systems like

programmable logic controllers (PLCs), supervisory control

and data acquisition systems (SCADA), and robotic controls,

whose interpretation of data is centered around controlling and

monitoring production processes.

As a result, it makes sense to allow each functional domain

in your architecture and teams therein a considerable amount

of sovereignty in how they package the data, albeit following

the guidelines of federated data governance. This autonomy

allows the tailoring of data models to address advanced

analytics use cases specific to that domain, which empowers

regular users, who may not have specialized skills, to analyze

data without relying on data scientists to sift through data that

has been gathered and organized centrally.

Architecting a Unified Namespace for IIoT

4

Now the data can be transformed and mapped into an

enterprise-wide namespace to ensure consistent and

integrated use across different business areas. This approach

helps to manage complexity by creating clear interfaces and

interactions between different parts of your architecture,

which can evolve independently while still integrating with

one another as necessary. It enables the effective distribution

of data while maintaining flexibility, security, oversight, and

separating concerns on an enterprise scale.

Open Architecture and Standard Data
Infrastructure

For the UNS to function effectively, it’s essential to establish

a data infrastructure that supports an open architecture.

This means using a standardized method for exchanging

information that is openly accessible and widely adopted.

Moreover, the infrastructure should incorporate a publish/

subscribe model, which enables a flexible and decoupled

way of sharing data within a functional domain and across

functional domains within your enterprise. This setup must be

efficient in terms of bandwidth use and reliability. In addition,

a UNS-based system must be self-aware: it should seamlessly

integrate new participants and their data into the existing

communication network without manual intervention.

The MQTT protocol has emerged as the communication

standard in a UNS architecture, as it embodies the core

qualities needed for a robust data infrastructure highlighted

above. It facilitates the sharing of data — and therefore value

— among all entities within the UNS architecture and reduces

the complexity and cognitive load in data exchange. You can

download our MQTT Essentials Guide to learn more about how

MQTT works.

An open architecture plays a crucial role in fostering

innovation within a manufacturing organization. It allows

teams to formulate hypotheses about data applications and

promptly access the necessary tools to test these ideas.

With an open architecture, these tools can be effortlessly

integrated into the existing data infrastructure, eliminating

the need for specialized connectors or converters to handle

proprietary interfaces. This streamlined integration accelerates

the innovation process, as teams can focus on testing and

developing ideas rather than navigating technical compatibility

issues.

Moreover, embracing an open architecture avoids the

accumulation of technical debt that often comes with

custom-built connections for proprietary interfaces. Not being

locked into vendor-specific solutions allows the organization

to adapt more swiftly to technological advancements. This

adaptability means that future integrations, upgrades, or

changes can be implemented without the need to overhaul the

existing infrastructure or rewrite custom code, saving time and

resources and achieving faster time to market.

Federated Data Governance

Let’s address a principle designed to bring order and clarity to

the distributed, domain-oriented architecture advocated by the

UNS: federated data governance. This management system is

designed to maintain data quality and ensure interoperability

within a distributed domain-oriented environment. The

principle behind this approach is to manage and govern data

across various domains or business areas, aiming to achieve

consistent integrity, interoperability, accessibility, security, and

privacy.

This form of governance promotes the development of

universal standards, practices, and policies for data handling

and use while also honoring the individual governance of

different functional domains. It encourages different data

custodians across a manufacturing enterprise to collaborate

on maintaining data quality and interoperability by establishing

common data standards, formats, and protocols.

 www.hivemq.com

5



https://www.hivemq.com/mqtt/

In the context of UNS, governance must balance the need for

localized control and optimization within autonomous domains

with the need for overarching harmony across all domains.

This balance acknowledges that the system is dynamic

and cannot be rigidly controlled. Governance in UNS favors

empowering teams close to the data, as they are the most

informed and, hence, most capable of managing and sharing

their data and ensuring that it is usable, valuable, and feasible

to generate.

Core Components of a UNS

MQTT Broker for the Unified Namespace

At the heart of the UNS architecture is the MQTT broker,

a pivotal piece that acts as the central hub for data

communication. When planning your UNS, your setup will

likely involve multiple MQTT brokers tailored to specific needs

within your architecture. These may include robust enterprise

MQTT broker clusters for high availability, such as HiveMQ, and

machine connectivity solutions with embedded MQTT brokers

like HiveMQ Edge.

The critical factor is ensuring that your broker fully adheres

to the OASIS standard MQTT specifications to stay true to

the UNS principles of an open architecture, which empowers

you to select best-in-class tools to plug into your MQTT data

infrastructure.

Your architecture requirements will determine which version

to choose between MQTT - 3 or 5. Most industrial devices

and applications support MQTT 3. However, MQTT version

5 brings advanced capabilities, such as user properties and

shared subscriptions, which can streamline certain processes

more efficiently than version 3. On the other hand, MQTT 5

includes several optional features, which means a broker can

be considered MQTT 5 compliant without supporting every

feature. This is significant regarding features like persisting

retained messages, which are optional in MQTT 5 but were

given in MQTT 3.

For your UNS, retained messages are critical; they ensure

that the latest information on any topic is available for new

participants, allowing them to access the current state and

events within the UNS immediately upon joining without the

need to wait, or in the case of MQTT Sparkplug, query devices

and applications across the network. We’ll discuss MQTT

Sparkplug's role in your architecture later in this eBook.

When specifying your UNS data infrastructure requirements,

it's crucial to define which MQTT features are necessary for

Architecting a Unified Namespace for IIoT

6

https://www.hivemq.com/products/mqtt-broker/
https://www.hivemq.com/products/hivemq-edge/
https://www.hivemq.com/mqtt/mqtt-sparkplug-essentials/

your use case, including which ones the broker must support to

fulfill your UNS's goals effectively.

IIoT Platform for the Unified Namespace

In industrial settings, which are often composed of a mix of

modern and older equipment with proprietary interfaces, there

exists a challenge in integrating this diverse technology into

a homogenous data ecosystem. This is where an Industrial

Internet of Things (IIoT) platform becomes essential.

It serves as a bridge, connecting older, legacy systems that

cannot directly communicate using the MQTT protocol, which

is central to a UNS ecosystem. The IIoT platform facilitates

the collection of data from these varied sources — ranging

from PLCs to SQL databases — and publishes it to the MQTT

network.

This platform does more than merely collect and transmit data.

It organizes and refines the data by categorizing it, defining

its structure and properties, and enhancing its readability

and reliability. This process may include aggregating data,

performing calculations, or converting data formats, all of

which add valuable context that aids in identifying patterns,

trends, and anomalies. This ensures that the data is not only

accessible and understandable within its local domain but is

also prepared for integration and analysis across different

functional domains.

At its core, the UNS is the combination of an MQTT broker and

an IIoT platform. The underlying principle is straightforward:

any new data that is generated behind the IIoT platform using

point-to-point should be published to the UNS, ensuring that

it's shared across the network as the current state and events.

Additionally, current data might be a snapshot of historical

records pertinent to the present moment, but ultimately, the

approach taken should be tailored to the problem.

Users can bypass the UNS and access data directly from the

IIoT platform for localized or immediate data requirements.

While direct connections, like linking a historian to a SCADA

system, are sometimes beneficial, the decision to use such

connections depends on the specific issue.

Data Persistence for the Unified Namespace

For an effective UNS architecture, relying solely on an MQTT

broker's real-time data-sharing capabilities and an IIoT

platform is insufficient. Data persistence is crucial, meaning

you need the ability to store and access historical data.

This requires incorporating both a historian (or time-series

database) and a structured database, such as SQL, into your

UNS architecture.

The historian plays a pivotal role by subscribing to the UNS and

archiving data over time, allowing for retrospective analysis

and insight. This historical data should be easily accessible

through the same IIoT platform managing the UNS.

 www.hivemq.com

7



Additionally, the SQL database, typically integrated with the

IIoT platform, holds structured data essential for operational

management and analysis.

The historian mirrors the live data model of the UNS but with

the key difference of maintaining a historical record. From

there, REST endpoints can be established to query historical

data, and these queries are made relevant within the UNS by

publishing them back to an appropriate level of the semantic

hierarchy.

Furthermore, transactional operations on stored data may be

facilitated through the IIoT platform acting as a bridge between

the UNS and a data store. For example, a machine's downtime

event captured by the MQTT broker can prompt an update to an

SQL table used for Manufacturing Execution Systems (MES).

The MES might use historical SQL data to calculate current

Key Performance Indicators (KPIs), which are then fed back to

the MQTT broker. Similarly, current work on a machine could

be informed by historical data on similar past work orders,

allowing operators to compare and improve performance

based on this historical context. These comparisons can

be published back to the MQTT broker, effectively bringing

historical performance benchmarks into the present analysis.

For recurring data queries, it's more efficient to directly

connect to the historian through the IIoT platform or set up

specific request/response topics within the UNS. However,

the UNS should not be used as a primary API for ad-hoc data

queries. Instead, queries should be directed through the native

tools that manage the databases, ensuring efficiency and

effectiveness.

Unified Namespace Reference
Architecture with MQTT

Below is the UNS Reference Architecture based on the core

components discussed. Again, as you can see, the MQTT

broker and IIoT platform play a significant role in architecting a

Unified Namespace.

Architecting a Unified Namespace for IIoT

8

The reference architecture also includes HiveMQ Edge to

facilitate data conversion from point-to-point protocols to

MQTT for simplified integration. HiveMQ Edge also embeds an

MQTT broker, which allows the data to be mapped into a local

namespace within a production area or line.

Data can also be gathered from devices with MQTT capabilities

and connectivity solutions like KepserverEX. This data is then

fed into a dedicated "raw MQTT namespace." From there,

the IIoT platform processes this data to give it context and a

consistent format before redistributing it into the UNS.

The use of MQTT bridges enables the multiple MQTT brokers

and different levels of a manufacturing enterprise to share

information, creating a distributed network of data brokers that

ensures data consistency and availability across the network.

This is crucial for large-scale, geographically distributed

industrial environments.

Unified Namespace Reference Architecture with
MQTT Sparkplug

MQTT Sparkplug offers additional interoperability within the

MQTT network. It standardizes MQTT Topic Namespace,

State Management, and Payload Structure, offering benefits

for an enterprise UNS architecture. MQTT Sparkplug can be

used up to Level 2, where a Sparkplug consumer, typically

an IIoT platform, can be used to subscribe to the Sparkplug

namespace and perform some transformation that could make

it easier to integrate data into enterprise systems that are not

Sparkplug compliant.

 www.hivemq.com

9



UNS represents a groundbreaking architectural approach

to digital transformation in the manufacturing sector.

Organizations can effectively manage complexity and enhance

data interoperability by adopting an edge-driven architecture

and leveraging an open architecture that utilizes a standard

data infrastructure like MQTT. In the next section, we will

discuss how to design your UNS semantic hierarchy with

information mapping.

Designing Your UNS Semantic Information
Hierarchy

Now that we have explored the fundamentals of a UNS

architecture for IIoT, we will discuss UNS semantic data

hierarchy design using MQTT.

To succeed in digital transformation, manufacturers should

embrace an architecture that ensures seamless data access

and integration across diverse platforms and applications

within specific areas and throughout the organization.

Establishing a clear semantic hierarchy, which includes layers

of structured data, is crucial for intuitive and open access to

this data. This is essental for leveraging data effectively to

enhance intelligence in manufacturing operations.

Structured data is important for several reasons, including:

•	 Analysis and insight: Structured data is more easily
analyzed, meaning businesses can gain actionable
insights quicker, leading to improved decision-making
and process optimization.

•	 Machine learning and AI: Structured data is essential
for training machine learning models and deploying AI
solutions, which can lead to further automation and
efficiency gains.

•	 Real-time processing: IIoT often requires real-time data
processing. Structured information can be processed
more quickly, which is critical for real-time applications.

•	 User experience: Well-structured data can improve the
user experience by providing easier access to relevant
information and more intuitive interfaces.

•	 Interoperability: Structured information ensures that
data from different sources can be integrated and used
across different platforms and applications.

•	 Scalability: As businesses grow, so does the amount of
data. Structured information ensures that systems can
scale without losing performance or data integrity.

•	 Data Management: Structuring data helps in organizing,

storing, and managing it efficiently, enabling faster

access and analysis.

Therefore, the UNS architectural approach offers a real-

time, semantically-organized hierarchical data structure.

This structure acts as a central hub, a single source of truth,

reflecting a business's current state and events. It grants

every network participant immediate access to information

throughout the manufacturing organization and provides a

clear pathway to find analytical data relevant to their roles.

Let us explore how the MQTT protocol can be used to build a

semantic data hierarchy for your UNS.

UNS Semantic Data Hierarchy Design Using MQTT

In an MQTT-based publish-subscribe system, the MQTT

broker organizes data using a topic hierarchy, which acts as

a structured framework for data access. This hierarchical

organization enables precise control over data sources within

a UNS. Participants within the network can efficiently access

required data by subscribing to specific levels of this hierarchy.

Additionally, they can use wildcard characters such as '+' and

'#' in their subscriptions to receive messages from multiple

topics simultaneously instead of subscribing to each topic

separately. This structure streamlines the process of data

distribution and access within the network.

The structured nature of MQTT topics enables the creation of

a comprehensive data access hierarchy within an organization:

the UNS hierarchy. This hierarchy comprises numerous

namespaces from various data sources arranged under the main

topic namespace. Some namespaces may hold unprocessed

data from devices and applications while others may contain

data that is processed, normalized, and contextualized for

local use or for feeding into external systems for further

analysis. Keeping a consistent topic structure is essential for a

predictable and organized namespace.

Architecting a Unified Namespace for IIoT

10

https://www.hivemq.com/mqtt/
https://www.hivemq.com/webinars/mqtt-accelerates-iot-digital-transformation/
https://www.hivemq.com/blog/mqtt-brokers-beginners-guide/
https://www.hivemq.com/blog/mqtt-brokers-beginners-guide/
https://www.hivemq.com/blog/mqtt-essentials-part-5-mqtt-topics-best-practices/

Above is an oversimplified example of the UNS structure

to give you an idea. Here, manufacturing/ is the root topic

and represents the entire scope of the organization's

manufacturing data. plantA/ and plantB/ are sub-topics under

the root, representing different manufacturing plants within the

organization. Under each plant, there are further subdivisions

such as sensors/, machines/, robotics/, inventory/, and

quality_control/ which categorize the types of data and

operational areas.

This structure allows participants in the MQTT network to

subscribe to specific levels of data as needed. For example,

a supervisor might subscribe to manufacturing/plantA/

machines/+/# to receive all messages related to machines in

Plant A, while a quality control analyst might only subscribe

to manufacturing/plantB/quality_control/testing/# to receive

data on all tests conducted in plant B.

Regardless of the specific setup, it's essential to establish

and document the categories and relationships within your

UNS beforehand. The organization's semantic structure

should be embedded within the topic namespace, ensuring

that information about data access is available independently

of the actual data content. While the UNS operates as

a decentralized and dynamic system where individual

constituent namespaces may alter or cease to exist, the

primary namespace structure should stay constant, only

changing when transitioning to a new version.

Best Practices for MQTT Topic Namespace
Structuring for UNS

ISA-95 Common Data Model

When organizing your MQTT topic namespace for the UNS,

it's largely up to the system architect to determine the layout.

However, following best practices, such as adopting the ISA-95

common data model, can prove beneficial. This model helps

you reflect your organizational hierarchy within the MQTT

topic structure, effectively organizing data streams between

producers and consumers in a manufacturing environment.

The hierarchy typically follows this pattern:

Enterprise > Site > Area > Line > Cell

Applying this model, your primary MQTT topic namespace for

the UNS might be structured like this:

FreshDairy/Munich/Packaging/Line1/Cell1

- manufacturing/

- plantA/

- sensors/

- humidity/

- sensor001

- sensor002

- ...

- inventory/

- raw_materials/

- current_stock

- reorder_levels

- finished_goods/

- current_stock

- shipping_schedule

- quality_control/

- inspection/

- results

- trends

- testing/

- test001/

- results

- next_schedule

-

- plantB/

- ...

 www.hivemq.com

11



Versioning Your UNS
MQTT Topic Namespace

As your UNS systems develop, incorporating new features

might necessitate alterations in the MQTT topic structure.

Versioning these topic structures enables developers and

operators to handle updates more efficiently, reducing the risk

of system failures due to incompatible updates and providing

a better experience for end-users by maintaining service

continuity. This approach allows older clients to operate

reliably on their existing topic structures without the immediate

need for updates.

Moreover, versioning accommodates the diverse capabilities

and feature support across different clients by allowing them

to interact with the specific topic structure version they are

compatible with. Developers can leverage newer versions for

testing purposes, enabling them to refine changes in isolation

from the live system. Additionally, versioned topic structures

simplify documentation and maintenance, providing a clear

framework for systematic change tracking and management.

Here's an example of creating a versioned MQTT topic

namespace that incorporates both your specific naming

convention ('spec') and a version identifier ('version'). In this

structure, you also include the 'Client ID' within the topic path

itself.

Pattern for Versioned Topic Namespace:

<specification-name>/<version-number>/.../$area/$line/$cel

l/$client-id

For instance, if your specification is named 'mySpec' and you

are working with version 1, the topic namespace might be:

mySpec/v1/.../$area/$line/$cell/$client-id

Designing Unified
Namespace Data Structure

After defining the primary MQTT topic namespace, you'll need

to devise a scheme to organize raw and processed data across

your hierarchical structure systematically. Each level should

have its own detailed namespaces essential for defining your

UNS data architecture. The organization of these namespaces

affects the distribution and accessibility of analytical data

within the functional domain of its originator (data producer)

and how it is packaged for cross-domain integration and

actionable analysis.

To achieve this, begin with a strategic plan that identifies the

specific namespaces within your UNS and standardize them.

Consider the different types of namespaces that will be

integrated into your UNS, ensuring they facilitate clear and

efficient data communication and analysis across your

organization.

Establishing an Edge Namespace
for All Your UNS Data

The foundational concept of the UNS architecture is to avoid

preconceptions about the future utility of data, recognizing

that the value and relevance of data evolve as digital

transformation progresses. In alignment with this philosophy,

it's recommended to map every piece of data — especially

PLC tags — to the UNS. This includes maintaining a distinct

namespace for raw data, which you might refer to as the

'edge' or 'raw' namespace. The importance of consistent

documentation and implementation of this namespace across

your organization cannot be overstated, as it should align with

your data governance strategy.

The structure of the topic for this edge namespace would

follow the format:

Enterprise/site/area/line/cell/edge/

Within this namespace, you will find models representing

physical assets or equipment. These models primarily consist

of tags from your PLCs or control systems, capturing the

unprocessed, dynamic data streams from your machinery and

processes. If you have multiple PLCs in your production line,

then you can split up your edge namespace by PLCs. The raw

data namespace is crucial as it allows you to start collecting

data from day one and have it available in your UNS while you

still figure out how to package it for external consumption.

Establishing a Functional Namespace for Your UNS

After collecting raw data into an edge namespace, the next

Architecting a Unified Namespace for IIoT

12

step is to process this data, making it suitable for various

applications within a specific functional domain and across

your enterprise. This involves processes such as modeling,

normalizing, contextualizing, transforming, and implementing

uniform naming conventions. Once processed, this data should

be kept on a separate namespace, known as the functional

namespace.

The functional namespace is organized in a hierarchical

format, typically as follows:

Site/area/line/cell/functions/…

As discussed previously, an IIoT platform is essential for the

creation of a functional namespace. It is used to subscribe to

data points ('tags') within the edge namespace, apply context

and modeling, and then republish the processed data into the

functional namespace of your UNS.

This structured approach allows for the creation of functions

and visualizations based on the standardized data within the

UNS. For instance, an Overall Equipment Effectiveness (OEE)

namespace might calculate OEE values from the edge data and

present this in a dedicated OEE functional namespace. Ideally,

your functional namespace should encompass various KPIs

related to production, quality control, and maintenance, like

OEE, first pass yield, and mean time to repair.

Besides these universal KPIs, you might have ad-hoc functions

tailored to address specific analytical challenges within a

particular domain, such as a production line, area, or site.

Functional namespaces can also be published and consumed

at different organizational levels, such as profit and loss

figures at the site level or batch records at the line level.

Below is an example of a UNS semantic hierarchy to give you

an idea of what it would look like.

 www.hivemq.com

13



The number and granularity of the namespaces to incorporate

into your UNS are subject to the architect's discretion. You might

also consider creating informative namespaces, which contain

data abstracted for software, data lakes, and other systems, and

definitional namespaces, which hold rarely changing parameters

like installation dates, calibration records, etc.

As your understanding of data mapping and modeling evolves,

the functional namespace will expand. Therefore, it is a

continuous process of refinement to ensure the data remains

clear, interoperable, and, most importantly, useful.

It's crucial to recognize that while the UNS is a recommended

approach, it isn't a one-size-fits-all solution. Different

organizations will naturally develop their own unique UNS

data structures. The essential principle is to arrange the

namespaces within the UNS in a way that mirrors the

organizational structure. This alignment ensures that the data

is logically organized, making it straightforward for both users

and systems to find and access the necessary information.

Additionally, it is of utmost importance to meticulously

document the specifications of your namespaces. This

documentation ensures uniformity in how the namespaces are

implemented within your organization and is vital when sharing

data with external partners to guarantee clarity, consistency,

and the ability to work together seamlessly.

Removing Inactive Elements
from Unified Namespace

Finally, given the dynamic and expansive nature of the UNS,

it is common for certain elements, such as devices, sensors,

and namespaces originally established for temporary issues,

to become obsolete. These elements might linger in the UNS

even after their data sources or the problems they were meant

to address no longer exist. It's therefore essential to regularly

audit isa-95and clean your UNS to eliminate these inactive

components.

If you are adhering to best practices by setting the 'retain' flag

to true when publishing to your UNS, you can simply publish an

empty payload. This action will effectively remove the inactive

parts from the UNS.

The Role of MQTT Sparkplug
in UNS Data Structure

Sparkplug enhances MQTT networks by providing a

standardized format for topic namespaces, which helps

organize and identify devices and nodes within the network.

This standardization simplifies the process of data discovery

across the network.

Below is the standardized Sparkplug topic namespace

where group_id identifies a logical grouping of Edge Nodes,

edge-node_id uniquely identifies a specific edge node within

the same group, and device_id identifies a specific device

controlled by the edge node.

spBv1.0/group_id/message_type/edge_node_id/[device_id]

You can learn more about Sparkplug from our Sparkplug

Essentials Series.

However, Sparkplug's design presents two main challenges

for creating a semantic data hierarchy in enterprise Unified

Namespace (UNS) systems. First, the topic namespace in

Sparkplug is inflexible, with only three levels for addressing.

This limitation can hinder the representation of complex

organizational structures. Second, Sparkplug messages

contain multiple values, which prevents subscribing to

individual data points within these messages.

Despite these challenges, MQTT Sparkplug is popular for its

dynamic capabilities and efficient device management in the

controls domain. To overcome its limitations, many architects use

a combination of Sparkplug and flat MQTT. The recommended

practice is to use Sparkplug for the controls domain, particularly

for real-time SCADA implementations, and then switch to flat

MQTT for higher levels or cross-domain integration.

One method to achieve this is by incorporating the entire

semantic hierarchy into the group_id using delimiters within

the controls domain and then translating that into a flat MQTT

Architecting a Unified Namespace for IIoT

14

https://www.hivemq.com/mqtt/mqtt-sparkplug-essentials/
https://www.hivemq.com/mqtt/mqtt-sparkplug-essentials/

topic namespace for broader UNS integration. For example:

spBv1.0/Plant1:Area3:Line4:Cell2/# becomes /Plant1/Area3/

Line4/Cell2/#

This transition can be handled by an IIoT platform, MQTT

broker extensions, or custom programming. The chosen

method will also be used to separate Sparkplug's combined

metrics into individual MQTT topics for enterprise-level

applications.

Ultimately, the decision to integrate MQTT Sparkplug into a

UNS architecture or to use flat MQTT exclusively rests with the

discretion of the system architect.

In conclusion, the practical implementation of a UNS through

an MQTT-based semantic data hierarchy is a transformative

strategy for digital manufacturing. It enables seamless data

integration and real-time access, thereby fostering a more

agile, intelligent, and efficient manufacturing environment. The

hierarchical structure of MQTT topics facilitates precision in

data distribution and offers flexibility for scale. By adhering

to best practices such as the ISA-95 model and incorporating

versioning, manufacturers can ensure a robust and scalable

infrastructure that aligns with their organizational needs.

The differentiation between edge and functional namespaces

is a critical step in managing the lifecycle of data from its raw

state to a context-rich, actionable format. Regular auditing

and cleansing of the UNS ensure its relevance and efficiency,

preventing data obsolescence from hindering operational

capabilities. As manufacturers journey through digital

transformation, the UNS becomes more than just a technical

architecture; it embodies the confluence of data governance,

system interoperability, and organizational knowledge,

ultimately defining the backbone of a smart manufacturing

enterprise.

Data and Functional Modeling
for Unified Namespace

In a UNS architecture, different applications and subsystems

must understand the data they exchange. This understanding is

achieved through a data model, which defines the data's context

and meaning, enabling semantic interoperability. Data modeling

is, therefore, essential at the start of any data integration

process within the UNS. Its primary goal is to outline the

structure, relationships, and properties of the data to be used.

Data modeling requires identifying and organizing different

types of data attributes. These range from simple operational

data to more detailed explanations that define the data's

characteristics. For example, these descriptions can include

measurement units and other details that together represent

something in the real world, like a piece of industrial equipment

or a process. A well-structured data model is crucial for

organizing data in a clear, understandable manner, preparing it

for further processing and analysis. Such structuring is vital for

enabling data-driven applications and use cases.

Let’s discuss the process of designing your data models

for effective integration into the UNS ecosystem. We will

also cover the methods for functional modeling that enable

interactions within UNS and explain why DataOps is essential

for your UNS architecture.

Designing a Data Model
for the Unified Namespace

When designing a data model for the UNS, it's crucial to

balance robustness, adaptability, and seamless integration

with diverse systems and applications. Key properties must

be prioritized to enhance the model’s functionality, usability,

and relevance amidst evolving industrial demands and

technological progress.

In UNS, data models are typically established at the edge and fall

into two categories: those tailored for local analytical purposes

and those standardized for wider enterprise analysis. This

distinction should be considered in your data model design.

Another significant aspect to consider is the balance between

complexity and data richness. While enriching your model

with extensive data semantics is beneficial, it's essential to

maintain simplicity in your data payload. This approach aligns

with the UNS principle of lightweight data models.

 www.hivemq.com

15



Below is a list of important attributes to consider when

designing your data model for UNS. While not exhaustive,

this list serves as a foundational guide for planning your data

model in the UNS context.

•	 Model versioning: Your data model must include a
version property, similar to the versioning in your topic
namespace definition, allowing for tracking changes
and ensuring compatibility with different versions of

applications.

•	 Unique identifier: Every object in your UNS system
should have a unique identifier, like a serial number
or UUID, for precise identification and tracking across

various systems.

•	 Source system identification: In addition to reflecting the
source system in the UNS topic namespace, it is often
necessary to embed the MQTT topic path within the data
model, which ensures clarity without relying on external

topic path context.

•	 Sensor data: This is the core element of UNS objects
and varies based on the application, including metrics
such as temperature, pressure, humidity, and vibration.

Sensor data is vital for analytics and decision-making.

•	 Descriptive metadata: Basic information about an
asset (like a machine), including its type, manufacturer,
model, and specifications provides essential context for

understanding the data generated by the machine.

•	 Status information: Real-time data about the operational
state of an asset, including error codes and maintenance
alerts is key for monitoring the asset's health and

performance.

•	 Operational parameters: Thes are critical settings that
determine how a machine operates, such as temperature
ranges, pressure levels, or rotational speeds. They can
also include work order, product type, and operator ID,

varying with the use case.

•	 Data quality indicators: Details regarding the reliability

and accuracy of the reported data, crucial for analytics

applications to assess the data's trustworthiness.

•	 Location information: Integrating direct location data,
like GPS coordinates or site names, into the object

model, avoiding dependence on external relational

structures.

•	 Timestamps: Implementing a consistent timestamp format
for all data points is essential for time-series analysis and
critical for applications in analytics and machine learning.

Below is a JSON structure that provides a comprehensive view

of a typical UNS object, including all the key aspects required

for effective data management and analysis.

{

"modelVersion": "1.0",

"deviceId": "UUID-1234-5678",

"sourceSystemId": "Sitel/Area/Line1/Cell1",

"sensorData": {

"temperature": 22.5,

"pressure": 101.3,

"humidity": 45,

"vibration": 0.02

},

"metadata": {

"type": "HVAC System",

"manufacturer": "CoolAir Inc.",

"model": "CA9000"

"specifications": {

"maxТеmp": 30,

"minTemp": 15,

"maxPressure": 150

}

},

"status": {

"operationalState": "Running",

"errorCodes": ["Е01", "Е03"],

"maintenanceAlerts": ["Filter Replacement Due"]

},

"operationalParams": {

"setTemp": 21,

"setPressure": 100,

"workOrder": "WO-20231201"

"productType": "TypeA"

"operatorId": "OP-1001"

},

"dataQuality": {

"temperatureAccuracy": 0.5,

"pressureAccuracy": 1.0

},

"location": {

"gpsCoordinates": "35.6895° N, 139.6917° E",

"siteName": "Munich Facility"

},

"timestamp": "2023-12-01T12:30:00Z"

Architecting a Unified Namespace for IIoT

16

Designing a Functional
Model for the Unified Namespace

The UNS does more than just represent data objects for

physical machines on the shop floor. It also includes transient

objects created from activities occurring at Level 3, which is

the intermediate layer between the top floor and shop floor.

These activities involve coordinating personnel, equipment,

and materials to complete tasks. Additionally, they generate

data objects that need a clear and consistent model for

integration into the UNS system.

When developing data models for the UNS to enable

information flow between OT and IT domains, there are two

main strategies: build from scratch or use the ISA-95 functional

modeling standard as a guide or source of inspiration. The

aim of ISA-95 functional data modeling is to identify common

patterns in various manufacturing activities highlighted

previously, e.g. production tracking, dispatching, and

execution. These common patterns are then modelled as data

objects to facilitate information exchange in a standardized

and uniform way.

Of significance to the UNS architecture is the fact that data

objects defined by ISA-95 are implementation-independent.

In other words, the ISA-95 is an abstract specification that

doesn’t describe data types or information models that can

be used to create these objects. Also, it doesn’t specify what

transportation mechanism is to be used to move these objects

around. It simply defines a standard terminology for these

activities and uses UML representation for the data objects.

This flexibility means that the definitions of these objects can

be effectively used in a UNS architecture that utilizes MQTT

for data exchange. The choice of how to implement and

adapt these standards rests with the system architect. The

advantage of such standards is their adaptability; they can be

selectively applied and tailored to fit the unique performance

and business requirements of a particular architecture.

 www.hivemq.com

17



DataOps for the Unified Namespace

Data modeling is a crucial initial step in establishing the

structure, relationships, and characteristics of data objects

in your UNS. However, the challenge arises because not all

data producers can shape their data to match the specific

structure and semantics required by the UNS, and likewise,

not all data consumers can efficiently process data formatted

in this specific manner. Consequently, data often requires

adjustments to suit the distinct needs of various systems.

DataOps addresses this issue by developing an abstraction

layer to ensure data aligns with the naming and structural

standards of the UNS, rather than conforming to the unique

formats of its originating systems.

Let’s explore the capabilities that DataOps brings to the UNS.

•	 Data normalization: This process involves refining and
standardizing data to reduce redundancy and improve
data integrity. In manufacturing plants with data from
various sensors and devices, normalization ensures that
data is uniform in terms of units and formats, facilitating

accurate analysis and efficient storage.

•	 Data transformation: DataOps is responsible for
converting raw data into more suitable formats
for analysis. This could involve aggregating data,
performing calculations, or transforming it into a more

comprehensible form. For example, converting raw
speed data from various machines into an average
speed per shift allows for easier interpretation and

comparison.

•	 Data contextualization: This aspect of DataOps adds
layers of meaning to data by incorporating relevant
contextual information. It enhances decision-
making by including additional details like product
information, maintenance records, and environmental
factors. The use of metadata and data lineage in
this process enriches the dataset, enabling real-time
contextualization for prompt and informed decision-

making.

•	 Iterative data modeling: DataOps promotes a flexible
approach to data modeling, encouraging continuous
refinement and adaptation based on evolving needs or
new insights. This adaptability is crucial for keeping the

data model relevant and effective over time.

•	 Dynamic version control: Maintaining consistency
in data models is a challenge in UNS environments,
particularly those spanning multiple sites. DataOps
introduces dynamic version control, where data models
are continuously updated and integrated through CI/
CD pipelines. This approach helps prevent conflicts
between different versions of data models and ensures

they are always up-to-date with the latest requirements.

Essentially, DataOps ensures that data is well-organized,

understandable, and optimized for effective application in

data-driven use cases.

We’ve explored the process of designing data and functional

models in a UNS architecture. Establishing a robust data

model is critical for ensuring semantic interoperability among

diverse systems, facilitating data-driven decision-making and

operational efficiency. We also discussed the crucial role of

DataOps in the UNS ecosystem. By integrating these practices,

organizations can significantly enhance their ability to manage

and utilize data effectively within a UNS, ultimately leading to

improved operational insights and strategic decisions in the

industrial domain.

Architecting a Unified Namespace for IIoT

18

Securing the Unified Namespace
Architecture for IIoT

Industrial IoT organizations prioritize the security of their

data, and the UNS can allow for maximum security practices.

Let’s discuss the security challenges associated with UNS in

IIoT environments and offer actionable strategies and best

practices to address these challenges effectively.

Integrating diverse systems within the UNS architecture

inherently increases its exposure to various security threats.

These threats pose risks to data integrity and privacy and

can lead to operational disruptions and substantial financial

losses. In an era where cyberattacks are becoming more

sophisticated and frequent, particularly targeting critical

infrastructure, the need for robust security measures within

UNS environments has never been more urgent.

Let’s delve into the security challenges associated with UNS

and examine strategies and best practices to address them

effectively. From fundamental aspects like authentication and

authorization to advanced considerations such as encryption,

client management, and data governance, we will explore the

various facets of securing a UNS.

Authentication and Authorization

To secure MQTT communications in your UNS, authorization

for each client is crucial to prevent unrestricted access to all

topics. The MQTT 3.1.1 specification acknowledges the need

for authorization in hostile environments.

Topic permissions set by the broker dictate what clients can

publish or subscribe to, including topic specificity, operation

type (publish, subscribe, or both), and quality of service

level. If unauthorized, a client's attempt to publish can lead

to disconnection or non-delivery of the message without

notification. For subscriptions, the broker can deny access and

notify the client if they lack permission for a specific topic. Key

strategies include:

•	 Username and password: The MQTT protocol provides
username and password fields for authenticating

message exchange. The client can send a username and
password when it connects to an MQTT broker.

•	 Role-based access control (RBAC): This involves
assigning permissions based on roles within the
organization, ensuring that only authorized users have
access to specific MQTT topics.

•	 Access control lists (ACLs): ACLs provide a more
granular level of control, specifying which clients can
publish or subscribe to certain topics.

•	 Integration of OAuth2: Although challenging, using
OAuth2 for MQTT broker authentication centralizes the
management of access, allowing for more streamlined

and secure control of user permissions.

Encryption and Secure Communication

MQTT operates over TCP, which by default, is unencrypted.

Many MQTT brokers, including HiveMQ, support TLS as a

substitute for plain TCP for secure UNS communication. This

is especially important when using MQTT CONNECT packet's

username and password for authentication and authorization,

to ensure data security. Port 8883 is the standardized,

reserved port for MQTT over TLS, known as “secure-mqtt”,

ensuring exclusive and secure MQTT communications. Key

strategies include:

•	 Transport Layer Security (TLS/SSL): This protocol
encrypts data in transit, protecting it from interception
and tampering.

•	 Secure WebSockets and VPNs: For environments where
TLS might not be suitable, using secure WebSockets or
operating within a Virtual Private Network (VPN) can
offer additional security layers.

•	 Certificate management: Ensuring proper management
and regular updates of certificates used in TLS/SSL is

crucial for maintaining encryption integrity.

Client Identifier (ClientID) Management

The structure and validation of ClientIDs are critical for

defining access rights. A well-designed ClientID can be

integrated into the topical structure, ensuring that clients only

 www.hivemq.com

19



https://www.hivemq.com/mqtt/
https://www.hivemq.com/blog/mqtt-security-fundamentals-authorization/
https://www.hivemq.com/blog/mqtt-security-fundamentals-tls-ssl/

access permitted topics. Key strategies include:

•	 Dynamic integration of ClientID in topic structure: This
strategy allows for the dynamic allocation of rights
based on the ClientID, providing a secure way to manage
access at the topic level.

•	 Validation and persistence of ClientIDs: Ensuring that
ClientIDs can be validated and are consistent across
sessions enhances security. This also facilitates the use
of persistent sessions, beneficial in unstable network
conditions.

•	 Meta-information utilization: Using meta-information
from ClientIDs for authorization purposes adds an
additional layer of security by ensuring that only clients
belonging to certain groups can access specific topics.

Securing Your MQTT Infrastructure for UNS

Securing MQTT infrastructure involves understanding network

topology and implementing measures to prevent unauthorized

access and system downtimes. Key strategies include:

•	 Firewall: Use firewalls to filter traffic, blocking unexpected

or unnecessary traffic like UDP and ICMP packets, while

allowing MQTT traffic on standard ports (1883 for TCP,

8883 for TLS).

•	 Load balancer: Employ load balancers to distribute
MQTT traffic across multiple brokers, preventing
overloading and enabling traffic throttling in high-traffic
scenarios.

•	 Demilitarized zone (DMZ): Set up a DMZ for internet-
facing services like MQTT brokers, with additional
firewall protection to secure access to internal systems.

High Availability and Redundancy

Setting up MQTT broker clusters in each plant and a central

cluster in the cloud can mitigate the risk of single points

of failure. This approach ensures that even if one broker is

compromised, others can take over, maintaining network

integrity. Key strategies include:

•	 MQTT broker clusters: Implementing MQTT broker

clusters in each plant and a central cluster in the cloud

enhances resilience. In this setup, if one broker fails or

is compromised, others in the cluster can continue to

operate, minimizing downtime and potential data loss.

•	 Geographical distribution: Distributing these clusters

across multiple availability zones can further reduce risks

related to regional outages or disasters.

•	 Failover mechanisms: Implementing automated failover

mechanisms ensures a seamless transition between

brokers in case of failure.

Data Governance and Training

This approach ensures that everyone understands the system's

structure and the importance of security, reducing the risk of

inadvertent breaches. Key strategies include:

•	 Comprehensive data governance: This involves the entire

architecture, ensuring all users know and comply with

data security policies.

•	 Reskilling and training: Regular training programs for staff

to understand the security implications and proper use of

MQTT systems are vital. This helps in building a culture of

security awareness across the organization.

•	 Decentralized data governance: Encouraging a

decentralized approach, where every employee acts as

a data steward, can enhance security by distributing

responsibility.

Regular Updates and Monitoring

Keeping MQTT brokers and clients in your UNS updated and

employing monitoring tools for anomaly detection is vital for

maintaining a secure environment. Key strategies include:

•	 Automated patch management: Keeping MQTT brokers

and clients updated with the latest security patches

is crucial. Automating this process ensures the timely

application of updates.

•	 Anomaly detection: Implementing advanced monitoring

tools that can detect unusual network activity or access

patterns helps in the early identification of potential

security breaches.

Architecting a Unified Namespace for IIoT

20

Conclusion

The security of a UNS is a multifaceted endeavor requiring a

comprehensive and proactive approach. As detailed in this

article, employing strategies such as robust authentication

and authorization, encryption and secure communication, and

diligent ClientID management are foundational to securing UNS

environments. Equally important are the infrastructural aspects,

including effective firewall implementation, load balancing, and

the establishment of demilitarized zones.

High availability and redundancy through MQTT broker clusters

and geographical distribution ensure continuity and resilience in

the face of potential breaches or system failures. Additionally,

a strong emphasis on data governance and continuous staff

training creates a culture of security awareness and readiness,

which is crucial in mitigating risks associated with human error.

Ultimately, the security of UNS is not a one-time task but an

ongoing process of adaptation and improvement. As technology

evolves and new threats emerge, organizations must remain

vigilant and responsive, continuously refining their security

strategies to safeguard their operations and data effectively.

 www.hivemq.com

21



HiveMQ empowers businesses to transform with the most
trusted MQTT platform. Designed to connect, communicate,
and control IoT data under real-world stress, the HiveMQ MQTT
Platform is the proven enterprise standard for Industry 4.0.
Leading brands like Audi, BMW, Liberty Global, Mercedes-Benz,
Siemens, and ZF choose HiveMQ to build smarter IIoT projects,
modernize factories, and create better customer experiences.

Visit hivemq.com to learn more

About HiveMQ

www.hivemq.com

http://hivemq.com

	HIVEMQ AUN for IIOT Cover.pdf
	hivemq-architecting-a-unified-namespace-for-iiot.pdf
	Foundations of a Unified
Namespace for IIoT
	Principles of a Unified Namespace Architecture
	Open Architecture and Standard Data Infrastructure
	Federated Data Governance
	Core Components of a UNS
	IIoT Platform for the Unified Namespace
	Data Persistence for the Unified Namespace
	Unified Namespace Reference
Architecture with MQTT
	Unified Namespace Reference Architecture with MQTT Sparkplug
	Designing Your UNS Semantic Information Hierarchy
	UNS Semantic Data Hierarchy Design Using MQTT
	Best Practices for MQTT Topic Namespace Structuring for UNS
	Versioning Your UNS
MQTT Topic Namespace
	Designing Unified
Namespace Data Structure
	Establishing an Edge Namespace
for All Your UNS Data
	Establishing a Functional Namespace for Your UNS
	The Role of MQTT Sparkplug
in UNS Data Structure

	Data and Functional Modeling
for Unified Namespace
	Designing a Data Model
for the Unified Namespace
	Designing a Functional
Model for the Unified Namespace
	DataOps for the Unified Namespace

	Securing the Unified Namespace Architecture for IIoT
	Authentication and Authorization
	Encryption and Secure Communication
	Securing Your MQTT Infrastructure for UNS
	High Availability and Redundancy
	Data Governance and Training
	Regular Updates and Monitoring

