
SOFTWARE?
A LINEAJE DATA LABS REPORT

An Approach to Enhance
Software Supply Chain

Security demonstrated by a
deep analysis of the Apache

Software Foundation

WHAT’S IN YOUR OPEN SOURCE

LINEAJE

Table of Contents

QUICK REFERENCE CHEAT SHEET

 Software Integrity Quick Guide

 Software Risk Quick Guide
 Software Supply Chain Integrity & Risk for Your Applications

 References

A FORMAL MODEL FOR SOFTWARE SUPPLY CHAIN SECURITY

 Discover Your Software’s Genealogy – Decomposing Software

 Measuring Software’s Integrity: Attesting Software
 Understanding Inherent Risk for Each Component of Software

 Software Supply Chain Lineaje Model: The Model from Olympus

IS YOUR COMPANY THE NEXT TROY?

ASSESSING YOUR SOFTWARE SUPPLY CHAIN

Like the Trojan Horse, the supply chain is created outside city limits

ASSESSING THE APACHE SOFTWARE FOUNDATION: SOFTWARE FOR THE GOOD OF TROY

 Top Takeaways for the ‘Software For The Common Good’

 The Apache Software Foundation
 The Apache Software Foundation Assessment

 1. Who’s Writing Apache Software?
 2. ASF Projects: Beautiful Horses But What Do They Hide?

 3. Older is Wiser: Later ASF Versions are Less Risky
 4. Should You Bring the Gift In? Assessing Apache Projects

3

4

4

27

27

27
28
29

13

14
15
16

17
18
19

20

21

22

23
25
26

6

6

7

8

9

10

11

What’s Inside an Open Source Trojan Horse?
What Troy Missed But You Should Not!
 1. Every Software is Like an Iceberg
 2. Integrity Check: True Open Source Dependency or Trojan Horse
 3. The Soldiers of Troy: Developer-led Patching is of Limited Defensive Value
 4. Investigate the Horse: Manage Your Software Supply Chain

TROJAN HORSES

Throughout history, from ancient Greek armies to
modern warfare, investing in a secure supply chain has
been a critical factor in military operations. The same is
true for nearly every industry, as securing the supply
chain is essential for operational success. The
pandemic highlighted vulnerabilities in the United
States physical supply chain, which led to significant
disruptions. Have companies recognized the
problems lurking in their software supply chain? The
software pandemic that showcases a vulnerable
software supply chain is already upon us.

With more software being assembled rather than built
by developers, a reliable and secure software supply
chain is now critical for our digital future. Open source
software is now an intrinsic part of the software supply
chain. Lineaje recognizes commercial applications
where 99% of the software is open source.

Unfortunately, software producers have paid little
attention to the robustness of their software supply
chain. It’s not surprising to learn that most
organizations lack a complete understanding of their
software supply chains.

In the Greek myth of the Trojan War, the soldiers
defending the city of Troy brought what appeared to
be a gift into their city walls. This became known as
the Trojan horse, which ultimately led to the city’s
destruction. Today, developers make decisions on the
dependencies they bring in. These decisions – what to
source and from whom to source – are typically based
on the utility of the dependency and its popularity.
Without deep analysis, developers are essentially
bringing in Trojan horses. Like the soldiers of Troy, your
developers can become enamored by the beauty of
the dependencies they bring in. What at first seems to
be a gift may conceal harmful ingredients.

Co-founder & CEO
Lineaje Inc.

3

Do not blame your developers for dragging these
Trojan horses in. Tools to analyze the deep and
dynamic software supply chain have only recently been
created. We created Lineaje Data Labs to provide that
needed deep analysis tool for open source software
supply chains. SBOM360 by Lineaje is the industry’s
first comprehensive software supply chain manager.
The Apache Software Foundation (ASF), one of the
most popular open source providers, represents the
gold standard in open source software. This report
assesses ASF’s software and extends the findings to
the broader open source world.

Another thing to keep in mind is that if Lineaje can
assess the software supply chain of a globally
distributed ASF, we can do it for your company as well
– irrespective of whether you are a software producer
or consumer. Using SBOM360, Lineaje Data Labs
completed this analysis in about four weeks. We have
introduced a fast, accurate, and crucial tool to the
cybersecurity sphere. If you want your software
portfolio assessed, contact us.

Happy reading!

Javed Hasan

Is Your Company the Next Troy?

Assessing Your Software Supply Chain

Discovering your software components and creating
their entire genealogy – including all transitive
dependencies. This is called deep provenance.

Establishing Integrity: Our unique deep DNA
fingerprinting technology establishes integrity
throughout the supply chain without relying on
external tooling and their assertions.

Evaluating Inherent Risk: Determining how risky a
component is.

Building a great Software Supply Chain “Lineaje” by
remediating integrity and inherent risks.

The software supply chain is not built in our CI/CD
pipelines but is created to their left. The focus must be
“left of shift-left”. Organizations need tools like
SBOM360 to assess the integrity and risk of software
sourced from the left of shift-left. This east-west risk
vector runs straight into you and your customers'
production systems, with the CI/CD security tools
having no ability to assess either integrity or risk
despite what your existing vendors may claim.

Lineaje’s approach focuses on your software’s DNA and
produces a fully transparent, trusted software supply
chain for your organization in four steps:

Over the last decade, the modern software supply
chain has become more dynamic, complex, innovative,
free, and global. Yet, it’s been left entirely unmanaged.

Today, software involves tens of thousands of
components, is built in thousands of independent build
systems, and may be shipped or deployed in a hundred
different ways. This creates significant challenges in
understanding two fundamental questions about any
product we buy: “What’s in your Software?” and “How
good is it?”.

Software producers have embraced open source
software much more enthusiastically over the last
decade. Lineaje’s analysis indicates that, on average,
70 to 90% of software comprises open source
software. In some cases, over 99% of corporate
software comprises open source software. However,
this software is not adequately tracked, maintained,
updated, or inventoried.

Only software that is built securely can run
securely.

Organizations need tools like SBOM360 to
assess the integrity and risk of software
sourced from the left of shift-left. This
east-west risk vector runs straight into you and
your customers' production systems, with the
CI/CD security tools having no ability to assess
either integrity or risk despite what your
existing vendors may claim.

4

The lack of visibility into the software supply chain
creates an unsustainable cycle of discovering
vulnerabilities and weaknesses in software and IT
systems, overwhelming organizations. The opacity of
the software supply chain is exacerbating the problem.

Only software that is built securely can run securely.
Current runtime security controls operated by software
consumers fail to secure digital infrastructures. This is
evidenced by continuous breaches and attacks even
as the world quickly becomes more digital. We need a
new approach – a focus on empowering and enabling
software producers to build better software.

Like the Trojan Horse, the supply chain is created outside city limits.

Our Software Supply Chain Lineaje Model enables us to rate all software we assess on an inherent risk vs.
software integrity graph. This makes it easy to compare versions of the same software and track improvements
over time. Additionally, you can evaluate your product portfolio and remediate your weaknesses. Procurement
managers & CISOs can compare various vendors’ products to determine the best vendor for them.

An in-depth discussion of this model can be found in the chapter “A Formal Model for Software Supply Chain
Security”. For a quicker solution, you can find a cheat sheet on the last page of this report.

As previously mentioned, we performed our genealogy analysis on one of the world’s most widely used open
source software producers – The Apache Software Foundation – to demonstrate the effectiveness of this
approach. However, most dependencies in ASF projects are from non-ASF sources enabling a rich analysis of a
wide spectrum of open source packages and driving some conclusions about the open source ecosystem.

5

Visible Direct
Dependencies

Components of
dubious origin

Components with
inherent Risk

Transitive, Invisible,
Dependencies

Vulnerabilities
introduced by

dependent Projects

Mean times a package
is reused in a Project

Transitive vulnerabilities
your dev cannot patch

Critical & high
vulnerabilities in Transitive

Dependencies

Unknown
Components

Average number of
repeated patches for

every vulnerability

6

Lineaje Data Labs decomposed and assessed tens of thousands of open source projects – enabling us to not only
analyze the top ASF projects but also get a statistically significant insight into open source projects. This chapter
focuses on key findings and takeaways for open source software.

10%

5.3%

Trojan Horses

41%

82%

90%

90%

2.7

>50%

3%

2.7

What’s Inside an Open Source Trojan Horse?

The key takeaways from our analysis are interesting

 Every Software is Like an Iceberg

Icebergs are deceptive, appearing smaller and more
benign than they truly are. The same holds for open
source software. More than four-fifths of open source
software is invisible to - tools focusing on direct
dependencies and developers including those
packages.

 The Soldiers of Troy: Developer-led Patching is
 of Limited Defensive Value
Open-source software, like commercial software,
contains direct and transitive dependencies.
Vulnerabilities exist in both. However, not all
vulnerabilities have solutions. In fact, most
vulnerabilities have no available fixes. Your most
significant risk is not the vulnerabilities you did not
patch but those you do not have patches for! They
stay with you whether you patch the rest or not.

7

Integrity Check: True Open Source Dependency
 or Trojan Horse?

While discovering a software’s dependency chain is
interesting, establishing its integrity is critical. Without
specifying the integrity of both embedded packages
and their linked source code, you cannot know which
dependencies could be a Trojan horse that, in turn,
drag in other unsavory dependencies. Our research
shows that 82% of all open-source software
components are inherently risky.

 Investigate the Horse: Manage the Software
 Supply Chain Lineaje

In our model, the popularity of a project has little to do
with its overall risk position, but developers
predominantly select based on popularity. Apache
eCharts, the most popular ASF project, is firmly bright
red – but is embedded in approximately 210,751 other
open-source projects. This may include some you
already use!

What Troy Missed, But You Should Not!

Direct Dependencies

Transitive Dependencies

Source of 90%
Vulnerabilities

Discover Software Genealogy

Icebergs are deceiving. These seem smaller and more
benign than they are. The same is true for open source
software. More than 80% of open source software is
invisible to - tools focusing on direct dependencies and
developers including those packages.

Open source software also embeds other open source
software. Our analysis reveals that open source
software developers freely pull in other open source
packages which are not part of their project.

Other OSS Dependencies

8

Developed Within Project

Each dependency they pull in brings in more
dependencies to their project. Sometimes they pull in
the same package! On average, a package is used 2.7
times in any piece of software your organization pulls in.

Every Software is Like an Iceberg

10%

90%

32%

68%

Integrity Check: True Open Source Dependency or Trojan Horse?

Measure Software Integrity
Discovering your dependency chain is interesting, but
establishing its integrity is critical. Without establishing
the integrity of both embedded packages and their
linked source code, you cannot know which
dependencies could be a Trojan horse that, in turn,
drag in other unsavory dependencies. Our sample
shows that 82% of all open source software
components are inherently risky. (For a deeper
discussion, please read the chapter “Establishing a
formal model of Software Supply Chain Security”)

3% of all components analyzed are unknown! These
unknowns are potentially more lethal than any
vulnerability in your software. Deep integrity analysis
shows we cannot determine any known source for
them – LCAL 0 is their integrity level.

However, they are included in the package you depend
on and ship as part of your software.

Your SCA tools and dependency checkers will
find nothing wrong with these unknowns
because they don’t establish the integrity of
their reports!

Your SCA tools and dependency checkers will find
nothing wrong with these unknowns because they
don’t establish the integrity of their reports! You are
distributing software with low integrity that is easily
tamperable and unable to detect tampering.

9

Another 5.3% are of dubious character – LCAL 1 level.
They lie about who they are! Integrity checks reveal
that the PURL package and/or its linked source do not
match the package you are shipping with. If a
dependency pulls them, they come pre-tampered. Your
dependency checkers will identify them as “good to
go”! Just like your SCA tool would never detect a
SolarWinds because it lacks integrity checks.

3%

5.3%

Are Unknown

Are of Dubious Origin

Published
Project A

Direct
Dependencies

Transitive
Dependencies

We see the following distribution for all
the vulnerabilities you have fixes for:

Vulnerabilities in direct
dependencies

Vulnerabilities in other
transitively dependent
open source projects

This means that its
code is exercised a
few times in
different contexts.
Reachability
analysis prioritizing
vulnerabilities
based on what an
organization
exercises misses
this critical insight.

Understand Inherent Risk

Like commercial software, open source software contains direct and transitive dependencies. Vulnerabilities exist
in both. However, not all vulnerabilities have fixes. In fact, the majority of vulnerabilities have no available fix. Your
most significant risk is not the vulnerabilities you did not patch but the ones you do not have patches for! They
stay with you whether you patch the rest or not.

Vulnerabilities that are part of transitive dependencies and are external to your project cannot be patched by your
developers. Though independent patches exist for those vulnerabilities, Project B has to uptake those patches. If
your developers do that, they also have to re-certify Project B with those updates - this is impossible for them!

Additionally, our analysis reveals that a specific component, on average, exists 2.7 times. This means that its code
is exercised a few times in different contexts. Reachability analysis prioritizing vulnerabilities based on what an
organization exercises misses this critical insight. Vendors pitching “reachability analysis” need to do a reachability
analysis for that component in each dependency instance before advising you to ignore that patch.

10

The Soldiers of Troy: Developer-led Patching is of Limited Defensive Value

25000

20000

5000

0

30000

35000

15000

10000

Critical High

Total Instances

Med

Fix Avaliavble

Low

Component Type

6%

94%

Vulnerability Distribution

OSS Project A

Project B Included

Dependency A1 from
Project A

Project C Included

Dependency B1 from
Project B

Dependency A11 from
Project A

Independent
Vulnerability Patch 1

Independent
Vulnerability Patch 4

Independent
Vulnerability Patch 3

Independent
Vulnerability Patch 2

Your most significant risk is not the
vulnerabilities you did not patch but the ones
you do not have patches for!

Vulnerability and Fix instance counts

Are you shipping a Trojan Horse?

What’s easy to understand is – the goal - a
high-integrity software supply chain with low inherent
risk. However, the soldiers of Troy could establish
neither - they didn’t have the tools. Have your
developers established that, or are you shipping a
Trojan horse?
All the ASF projects do not get a passing grade in our
analysis. Though some come close, they could get
there if they fixed key vulnerabilities and up took some
patches. This underlines the point - if you are not
deeply analyzing your dependencies from open source
software, your products are very unlikely to pass an
in-depth security assessment of your SBOM.

Open source dependencies drag in significant security
risks. Each is a potential Trojan horse that can bring in
low-integrity software, putting your organizations and
your customers at risk. Many have significant
vulnerabilities that your developers cannot patch.

In our model, the popularity of a project has little to do
with its overall risk position, but developers
predominantly select based on popularity. Apache
eCharts, the most popular ASF project, is firmly bright
red – but is embedded in 210,751 other open source
projects - some that you may be already using.

11

Investigate the Horse: Manage Your Software Supply Chain

A dependency with high integrity (LCAL 2+) implies the
project is well maintained. Those developers are more
likely to update their software regularly and respond to
risky issues faster. In our Apache Foundation Software
analysis, we see this playout. Apache Airflow and
Apache Maven are high integrity and come close to our
green zones. If the authors of those projects upgraded
components to the latest versions, they would firmly be
in the green.

We recommend you take the first step - connect with
us, and we will assess your software supply chain. And
if you consume software, insist on an SBOM so that
you know how well-managed a product’s software
supply chain is. SBOM360 can also tell you that!

12

40%

1190

$22B

67

32%

210,751

68%

1191

16,489

113

8.32%

47,343

Assessing the Apache Software
Foundation: Software for the Good of Troy

36

90%

>40%

Key Statistics: Is “Software for the Common Good” good for Troy?

Organizations
contributing in
top 44 Projects

Fortune 500
Companies using

Apache Kafka

Estimated Annual
Value of Software

Used

Countries
with ASF

Contributors

OSS Projects
Using Apache

eChar ts

Websites use
Apache

HTTP Server

Non Apache
Components in

Apache Software

Unique Vulnerabilities
in 14912 Unique

Components

Critical Vulnerability
instances with no fixes
available in 44 Projects

Unknown,
Unverifiable
Components

Components in
eCharts with unknown

provenance

Critical & High
Vulnerability instances

in 44 Projects

Critically Risky
Components

Components in
eCharts which

originated from Meta

Vulnerability with
fixes that cannot be
patched by users of

ASF Projects

13

Top Takeaways for the ‘Software for the Common Good’

 Who’s Writing Apache Software? - Discovering
 ASF Genealogy
Around a third (13,322) of the components in ASF
software analyzed were written by ASF contributors;
however, two-thirds (28,667) were dependencies
included from other open source projects. This has
significant implications for the maintainability and
vulnerability management of ASF projects.

 ASF Projects: Beautiful Horses, But What Do
 They Hide?

Analysis of the top 44 projects shows that projects
whose dependencies are authentic and whose
packages could be mapped to their source have high
integrity and are less risky. Their authors also better
address their vulnerability, code quality, and security
posture.

 Should You Bring the Gift In? Assessing
 Apache Projects

Enterprises should carefully evaluate every ASF
dependency or project they consider using a tool like
SBOM360. Some, like Apache Maven, would match
COTS products, while others, like Apache Calcite, do
not meet basic software integrity expectations.

Older is Wiser: Later ASF Versions are Less
 Risky
Lineaje’s analysis of top ASF projects is not limited to
the latest version. We went back in time and inspected
earlier releases as well. Crawling previous releases
helped develop a history of Inherent Risk Level (IRL) for
each component in that release. Later versions have
lower vulnerabilities, better integrity, and lower risk
than earlier versions. Organizations should promptly
move to the latest versions of ASF projects.

14

The foundation estimated that the software
delivered by it to companies would be worth
roughly $22 Billion.

ASF's contribution to the world has been immense,
with its projects helping shape the internet and how
the industry uses it today. For instance, in addition to
the popular free and open source solution for hosting
websites, Apache HTTP Server and Apache Hadoop
provide a distributed computing framework for
processing large datasets, enabling businesses and
organizations to derive insights from big data. These
projects have become critical technology infrastructure
components, with millions relying on them daily.

Apache Software Foundation is a non-profit
organization that manages and supports over 320
open source active software projects, including Apache
HTTP Server, Apache Hadoop, Apache Tomcat, and
more. Millions of people use these projects across the
globe, with the Apache HTTP Server alone powering
over 40% of all websites. Additionally, the foundation
has over 750 individual members and 8,400 committers
who contribute to developing and maintaining these
projects. In 2021, ASF estimated that its contributors
updated or added more than half a billion lines of code.
The foundation estimated that the software delivered
by it to companies would be worth roughly $22 Billion.

Additionally, in 2020, Apache Kafka, an open
source distributed streaming platform, was
used by over 40% of Fortune 500 companies.

The Log4j vulnerability discovered in December
2021 exposed users to attacks that could
execute arbitrary code on affected systems.

15

Despite the many positive contributions of ASF's
projects, vulnerabilities have been discovered in their
software that has affected many organizations. For
example, the Log4j vulnerability discovered in
December 2021 exposed users to attacks that could
execute arbitrary code on affected systems. This
vulnerability and other critical vulnerabilities – like the
Apache Struts vulnerability that was exploited in the
Equifax data breach – illustrate how even the best-run
software projects have implications for companies that
use them.

ASF's popularity is rising, with its projects’ adoption
levels spiraling up in various industries. For example,
Apache Hadoop's market share grew from 26% in 2017
to 44% in 2021. Additionally, in 2020, Apache Kafka, an
open source distributed streaming platform, was used
by over 40% of Fortune 500 companies. Overall,
Apache Foundation's contributions to open source
software development have been invaluable. To our
understanding, ASF represents the gold standard in
open source software — a well-funded, successful,
open organization.

This prompted Lineaje to ask the questions - “What’s in
ASF software?” and “How good is it?”

The Apache Software Foundation

The Apache Software Foundation Assessment

Analytic Findings of ASF:

41,989 total components and 26 million lines of
code

68% non-ASF components

10% of direct components, 90% of indirect
(transitive) components

50% of critical /high vulnerabilities found in indirect
(transitive) components.

8.3% of components have unknown/dubious
integrity of supplier origins

>40% Inherent Risk Level (IRL) assessment at
“Critical Risk” >>Highest

Significance of Finding:

ASF cannot patch most of the vulnerabilities.

Approaches focused on patching and upgrading by
ASF consumers will not be effective.

Fixes for vulnerabilities must be applied at the root
component and then propagate to the “Top Level
Package.”

Validity of the origins of components is correlated
with more security software.

Lineaje Data Labs completed a comprehensive analysis of 44 projects from ASF. To begin, there are some
high-level key findings.

These 44 projects include 41,989 components. Across each project, there are a total of 37,860 unique transitive
dependencies and 14,912 unique components. The total lines of code analyzed are well over 26 million. Below is a
summary of the key findings from our analysis of ASF packages:

16

ASF Published
Projects

Supplier
Vulnerability

Instances

Most (68%) of the components are from non-ASF suppliers, including Oracle, Google, and Meta. This has
significant ramifications for effectively identifying and fixing vulnerabilities and issues within ASF packages.

In the 44 ASF packages we analyzed, 1,190 different open source suppliers were discovered, many contributing
less than 1% each. Thus, the largest number of components are from smaller, lesser-known, and harder-to-trace
suppliers. This raises concerns about ASF’s ability to manage the quality and security of the components in their
packages from other suppliers.

17

Discovering ASF Genealogy

Around a third (13,322) of the components in ASF software analyzed were written by ASF contributors; however,
two-thirds (28,667) were dependencies included from other open source projects. This has significant implications
for the maintainability and vulnerability management of ASF projects.

Other OSS
Dependencies

ASF Vulnerability
Instances

1. Who’s Writing Apache Software?

1190
Suppliers

90%
Transitive

10%
Direct

36715

68%

32%
ASF Published

Components

25322

Measuring ASF Software Integrity: High Integrity
Components

Using the Lineaje Component Attestation Level (LCAL)
analysis of ASF, we determined that the “attestability”
is relatively high for over 90% of dependencies.

However, all components with attestation levels of
LCAL 0 and LCAL 1 are completely tamperable by a
threat actor. These create high tamperability potential.
Given that most are transitive dependencies, these
tampers will be undetectable by current CI/CD tools
and build-system-centric attestation methodologies
like SLSA. If your build tool did not build the
dependency – which is essentially impossible for
transitive dependencies - they will not raise a flag. Any
supply chain is only as good as its weakest link, which
is also true for the software supply chain. These low
LCAL components are at high risk for tampering.

Most components have risk levels that should be
unacceptable to security-conscious organizations.
Much effort would be needed to make software
components with ‘Critical’ or ‘High’ inherent risk levels
“safe”. Therefore, part of the strategy for securing
software includes identifying the components that
explicitly drive up the risk and either removing them or
finding alternatives.

18

Analysis of the top 44 projects shows that projects whose dependencies are authentic and whose packages could
be mapped to their source are less risky. Their contributors also better address their vulnerability, code quality,
and security posture.

Even High Integrity Components Can Pose Risks

Even though we saw high integrity levels in over 90%
of dependencies, more than two-thirds of components
pose critical or high risks. The inherent risk
encapsulates risk from vulnerabilities, code quality,
security posture, attestability, and exposed secrets in
code. An interesting aspect that SBOM360 measures is
the ‘Age’ of the component. If a component has not
been updated for an extended period of time, it is not
maintained.

2. ASF Projects: Beautiful Horses, But What Do They Hide?

Lineaje Component
Attestation Level

LCAL0

LCAL1

LCAL2

LCAL3

Number of
Components

1255

2239

9649

28846

% of Total

2.99%

5.33%

22.98%

68.70%

Inherent Risk Level

Critical

High

Med

Low

Count

22455

5810

5107

7204

%

55%

14%

13%

18%

ASF Risk Matrix

Avd LCAL

Code Quality
10.00

8.00

6.00

4.00

2.00

0.00 Security Posture

Lineaje’s analysis of top ASF projects is not limited to the latest version. We went back in time and inspected
earlier releases as well. Crawling previous releases helped develop a history of Inherent Risk Level (IRL) for each
component in that release. Later versions have lower vulnerabilities, better integrity, and lower risk than earlier
versions. Organizations should promptly move to the latest versions of ASF projects.

ASF projects should also follow this advice. Upgrading ASF written components in ASF projects and moving to
later versions of Fasterxml components will accrue 81% of all improvements that a comprehensive upgrade of all
components would have accrued. This dramatically improves integrity and risk ratings for ASF Projects, moving
many into acceptable risk levels.

19

3. Older is Wiser: Later ASF Versions are Less Risky

7.5

7.4

7.3

7.2

7.1

7

6.9

6.8

6.7

6.6

6.5

6.4
1st Version 2nd Version 3rd Version

IRL Scores

Decomposed Versions

IRL Score Improvement over Versions

IR
L

Sc
or

e
-

0
to

 1
0

ASF, like many software companies, needs an
open source office to ensure that its projects'
components meet their customers’
expectations!

Enterprises should carefully evaluate every ASF dependency or project they consider using a tool like SBOM360.
Some, like Apache Maven, would match COTS products, while others, like Apache Calcite, do not meet basic
software integrity expectations.

Managing a Great Software Supply Chain Lineaje Model

Given that ASF projects have significant dependencies recommended that ASF evaluates its dependencies as
on non-ASF projects, it is apparent that the risk of carefully to improve its ratings across both integrity
those projects roll into ASF projects. Just like we and inherent risk dimensions. In fact, ASF, like many
recommend that organizations consuming ASF software companies, needs an open source office to
software evaluate each dependency carefully, it is ensure that its projects' components meet their
customers’ expectations!

20

4. Should You Bring the Gift In? Assessing Apache Projects

Lineaje’s genetic software analysis is a detailed model
to measure the four critical aspects of understanding
and fixing software at the source, as illustrated in the
diagram below.

Lineaje’s Software Supply Chain Security Approach
- Manage Software at the DNA Level

These key aspects are:

Discover your software’s genealogy tree: Complete software inventory achieved when you correctly
DECOMPOSE your software.

Measure your software's integrity: Can you ATTEST that your software DNA is what you believe it to be?

Understand inherent risk embedded in your software: Software developers & consumers must ASSESS the
risk of each component, dependency, and sub-dependencies - down to the last leaf.

Manage software supply chain Lineaje: New version planning can now include ways to improve software
integrity, reduce inherent risk, and quantify how new versions minimize the risk while continuing to highlight
innovations.

21A Formal Model for Software
Supply Chain Security

Understand the DNA and
Lineaje of your Software

Complete software inventory
achieved when you correctly
DECOMPOSE your software

3 Measure Inherent Risk in
your software

ASSESS the risk of each DNA
component, dependencies, and
sub-dependencies down to the

“leaf”

Determine the Intergrity
of your Software

Can you ATTEST that your
software DNA is actually what

you believe it to be?

4
Continuously Improve &

Fix Your Software

Continuously improve software
integrity and reduce inherent risk

with targeted DNA level fixes

1 2

It is important to note that regardless of the starting points – Distributable Image, Built-Component, or Source
Repo – a comprehensive origins mapping is required to build the entire dependency tree.

For ASF projects, our analysis started from the source repo of the project. Lineaje Crawler built the direct and
transitive dependency tree of the project. Then for each component in the dependency tree, source-build
mapping yields component source repos helping us pull the static and transitive static dependency list for those
components. Obtaining the entire genealogy of the open source repo allows us to derive the project's most
comprehensive ‘Attestation’ and ‘Inherent Risk Level’.

Distributable, package, and source decompositions are required to understand your software’s genealogy tree. At
Lineaje, software decomposition aims to understand the entire software genealogy, regardless of the starting
point or depth. To understand the most comprehensive view of the software, Lineaje crawler looks at the
distributable, identifying all packaged components. It further decomposes the package, identifying components
and their direct and transitive dependencies. Each component is mapped to its source origins, and a static direct
and transitive dependency is prepared. This is illustrated in the diagram below.

22

Discover Your Software’s Genealogy – Decomposing Software

In supply chain attacks like SolarWinds, the
build system itself was compromised - there are
inherent weaknesses in build-tool-based
attestation approaches.

The second challenge is that with millions of open
source projects, third parties and software
development companies must comply with NIST and
SLSA guidelines to create a trusted software supply
chain. That is not going to happen anytime soon!

There are multiple proposed standards for determining
your software’s integrity. NIST800-218 and SLSA
(Supply Chain Levels for Software Artifacts) take a
developer-centric view of component-level attestation
and places the onus of creating a secure supply chain
on people, tools, and processes. Additionally, it focuses
on compliance but does not deliver supply chain
security. Build tool dependencies in software
attestation are problematic, and we shied away from
that. Why? In supply chain attacks like SolarWinds, the
build system itself was compromised - there are
inherent weaknesses in build-tool-based attestation
approaches.

We are Lineaje Inc. and have a simple, practical,
and attestation approach that has set a
standard for future software guidelines.

Compliance is not security. Almost all breached
companies are compliant companies. People
following processes and relying on
compromisable tools are typically the weakest
links in security.

The third challenge is that compliance is not security.
Almost all breached companies are compliant
companies. People following processes and relying on
compromisable tools are typically the weakest links in
security.

In today’s world, components are created all over in
multiple build systems. So, SLSA and NIST approaches
are a non-starter unless adopted globally. For Google
or NIST, that’s probably more attainable. However, we
are Lineaje Inc. and have a simple, practical, and
attestation approach that has set a standard for future
software guidelines.

23

Measuring Software’s Integrity: Attesting Software

A highest-level component attestation does not
mean that its dependencies have as high an
attestation as the parent. This is also true for
SLSA and NIST and is an inherent weakness of
component-level attestation.

Lineaje bases the supply chain integrity attestation on
our proprietary and amazing fingerprinting technology.
This enables us to create a software supply chain of
trust, with each link having its own integrity rating from
a shipping product down to its last leaf component
with no further dependencies. Our
fingerprinting-centric LCAL methodology has a
significant advantage over build-system-centric
attestation approaches. Lineaje uses what is
accessible – package and source code. For example, if
you are using open source software, those are
accessible to you. So why not use them for attestation?
If you modify those dependencies, you can still access
both, enabling deep fingerprinting-based attestation.

Lineaje enables component attestations without
dependency on any tools. This attestation is at a
component level. A key thing to understand is that
each attestation level is for the component itself, not
its dependencies. A highest-level component
attestation does not mean that its dependencies have
as high an attestation as the parent. This is also true
for SLSA and NIST and is an inherent weakness of
component-level attestation. This understanding is
critical for supply chain security.

Protecting Troy: Introducing Lineaje Component Attestation Levels (LCAL)

With chained LCAL levels, Lineaje can attest
that what you shipped is what you built, what
you built is what you sourced, and what you
sourced is what was published by your
dependency, what was published is what was
sourced by them, and so on all the way
upstream to the leaf transitive dependency – a
provable end-to-end attested software supply
chain.

Last but not least, LCAL levels identify the weakest
links in the software supply chain. With chained LCAL
levels, Lineaje can attest that what you shipped is what
you built, what you built is what you sourced, and what
you sourced is what was published by your
dependency, what was published is what was sourced
by them, and so on all the way upstream to the leaf
transitive dependency – a provable end-to-end
attested software supply chain.

24

LCAL 1

LCAL 3

LCAL 4

LCAL 0

LCAL 2

Lineaje Component
Attestation Level

(LCAL)

Attested Build & Source:
A component package is Attested, and its source exists,
and the package is Attested to be built from that source.

Attested component:
The component is deemed as Attested if the component
name, PURL are traceable and attestable. The package is
available at PURL location and the fingerprints match.

Unknown component:
The component package cannot be resolved to any known
package.

Fully Attested:
Package & source attested to be untampered and malware
free. Attestation certifies that there is no malicious code or
tamper that was introduced in the original source or
between the source and built output. LCAL4 attestation is
compatible with builds produced in the past.

Attestation Description starting with component package

Known component:
The component is deemed as Known if the component
name, PURL are traceable and attestable. The package may
be available at the PURL location, but the fingerprints do
not match.

SLSA 0: No guarantees

Undeterminable by SLSA

Undeterminable by SLSA

SLSA 1: Unsigned provenance

Mapping to SLSA Levels

SLSA 2: Hosted source/build, signed provenance
SLSA 3: Security controls on host, non-falsifiable
 provenance
SLSA 4: Requires two-person review of all changes
 and a hermetic, reproducible build process

Recommendation

Block ship without manual attestation
by SecOps

Block ship without manual attestation
by SecOps

Lineaje recommended attestation level for
your Software Supply Chain Security to
remain untampered & malware free

Minimum level for every component in your
supply chain

Lineaje recommended minimum attestation
level for Software Supply Chain Security

Consumers and producers of software alike want to
have a certain level of confidence that their software is
secure and reliable. Software producers (where typical
software comprises 70-90% open source software)
cannot ensure the level of security unless they know
the risk in each dependent component. Additionally,
emerging threats within the software supply chain
landscape expose software to existing and new risks.
Log4j underscores this challenge.

Recently, processes and frameworks have been
proposed to help assess software security level;
however, these methods to date are high-level, not
adopted uniformly or ubiquitously, leading to ad hoc
implementations.

The challenge is that no consistent, clear,
testable, and repeatable ways exist to build and
maintain fact-based trust between the
components. This is because each latest open
source version adds newer components, a new
set of inherent risks, and a limited ability to
parse through them.

Lineaje Inherent Risk Levels (IRL)

Lineaje analyzes each component down to the leaf level (each component’s dependencies, the dependencies’
dependencies, down to the lowest level) against the key inherent risk measures. It then averages their scores to
produce the inherent risk level of your software. The table below describes this process and provides
recommendations for the different Inherent Risk Levels (IRLs).

Therefore, we developed an evidence-based quantitative methodology to assess software's inherent risk across
key measures.

The challenge is that no consistent, clear, testable, and
repeatable ways exist to build and maintain fact-based
trust between the components. This is because each
latest open source version adds newer components, a
new set of inherent risks, and a limited ability to parse
through them.

25

Understanding Inherent Risk for Each Component of Software

Zero (0) (ZIRL)

Low (0.1-3.9) (LIRL)

High (7.0-8.9) (HIRL)

Critical (9.0-10.0) (CIRL)

Inherent Risk Level (IRL)

Medium (4.0-6.9) (MIRL)

Description

Zero Inherent Risk Level.
Average risk score for all components in the software
across all six measures is zero.

Low Inherent Risk Level
Average risk score for all components in the software
across all six measures is between 0.1 and 3.9.

Medium Inherent Risk Level
Average risk score for all components in the software
across all six measures is between 4.0 and 6.9.

High Inherent Risk Level
Average risk score for all components in the software
across all six measures is between 7.0 and 8.9.

Critical Inherent Risk Level
Average risk score for all components in the software
across all six measures is between 9.0 and 10.0.

Recommendation

Continue monitoring for changes in overall software
to ensure risk remains low.

Consider redeveloping the software starting with more
secure components.

Find opportunities to address some of the risk measures causing
the average risk score to go to medium.

Deploy risk mitigation solutions that target the identified
high-risk components and vulnerabilities.

Remove, update, or replace elevated risk components. Deploy
secure coding practices including continuous security testing.

Deploy risk mitigation solutions that target the identified
high-risk components and vulnerabilities.

Continue monitoring for changes in overall software to ensure
risk remains None.

This model is amazingly versatile. Here are some interesting and impactful use cases:

Putting our Software Integrity and Software Risk Models together into a single picture (via the Software Supply
Chain Lineaje Model) allows us to evaluate the risk of every component in each piece of software. Rolling it all up
for an SBOM and averaging them for all components in the software enables the ability to plot software against
each other.

Chief Product Officers can now view their entire portfolio on a single graph and understand which products are
the riskiest for their customers. Given that they also know the root cause of those risks, with products like
SBOM360, they can move their entire portfolio up and to the right.

CISOs & Product Managers can now plot a product and its multiple versions and planned versions on one graph
illustrating to management and customers how each release improves that product.

Procurement Officers can take competing products from vendors and use the graph to compare them and pick
the least risky one for their organizations.

This allows software producers to view their portfolio in a single graph with subsequent drill-downs for a single
SBOM with all its components ranked in an easy-to-use model. Similarly, software consumers can compare
vendors’ software in a chart choosing the one that best meets their expectations.

26

Software Supply Chain Lineaje Model: The Model from Olympus

27Quick Reference Cheat Sheet

Software Risk Quick Guide

Software Integrity Quick Guide

LCAL 1

LCAL 0

LCAL 2

Zero (0) (ZIRL)

LCAL 4

LCAL 3

Low (0.1-3.9) (LIRL)

High (7.0-8.9) (HIRL)

Lineaje Component
Attestation Level

(LCAL)

Critical (9.0-10.0) (CIRL)

Inherent Risk Level (IRL) Description

Medium (4.0-6.9) (MIRL)

Attestation Description starting with component package

Zero Inherent Risk Level.
Average risk score for all components in the software across all six measures is zero.

Low Inherent Risk Level
Average risk score for all components in the software across all six measures is between 0.1 and 3.9

Medium Inherent Risk Level
Average risk score for all components in the software across all six measures is between 4.0 and 6.9

High Inherent Risk Level
Average risk score for all components in the software across all six measures is between 7.0 and 8.9

Critical Inherent Risk Level
Average risk score for all components in the software across all six measures is between 9.0 and 10.0

Attested Build & Source:
A component package is Attested, and its source exists, and the package is Attested to be built from that source.

Fully Attested:
Package & source attested to be untampered and malware free. Attestation certifies that there is no malicious code or
tamper that was introduced in the original source or between the source and built output. LCAL4 attestation is compatible
with builds produced in the past.

Unknown component:
The component package cannot be resolved to any known package.

Known component:
The component is deemed as Known if the component name, PURL are traceable and attestable. The package may be available
at the PURL location, but the fingerprints do not match.

Attested component:
The component is deemed as Attested if the component name, PURL are traceable and attestable. The package is available at
PURL location and the fingerprints match.

28

Software Supply Chain Integrity & Risk for Your Applications

Zero (0) (ZIRL)

Low (0.1-3.9) (LIRL)

High (7.0-8.9) (HIRL)

Critical (9.0-10.0) (CIRL)

Inherent Risk Level (IRL)

Medium (4.0-6.9) (MIRL)

Description

Zero Inherent Risk Level.
Average risk score for all components in the software
across all six measures is zero.

Low Inherent Risk Level
Average risk score for all components in the software
across all six measures is between 0.1 and 3.9.

Medium Inherent Risk Level
Average risk score for all components in the software
across all six measures is between 4.0 and 6.9.

High Inherent Risk Level
Average risk score for all components in the software
across all six measures is between 7.0 and 8.9.

Critical Inherent Risk Level
Average risk score for all components in the software
across all six measures is between 9.0 and 10.0.

Recommendation

Continue monitoring for changes in overall software
to ensure risk remains low.

Consider redeveloping the software starting with
more secure components.

Find opportunities to address some of the risk measures causing
the average risk score to go to medium.

Deploy risk mitigation solutions that target the identified
high-risk components and vulnerabilities.

Remove, update, or replace elevated risk components. Deploy
secure coding practices including continuous security testing.
Deploy risk mitigation solutions that target the identified
high-risk components and vulnerabilities.

Continue monitoring for changes in overall software to ensure
risk remains None.

https://github.com/apache/echar ts

https://git hub.com/apache/groovy

https://git hub.com/apache/iotdb

https://git hub.com/apache/commons-lang

https://git hub.com/apache/flume

https://git hub.com/apache/pulsar

https://git hub.com/apache/spark

https://git hub.com/apache/avro

https://git hub.com/apache/curator

https://git hub.com/apache/activemq

https://git hub.com/apache/linkis

https://git hub.com/apache/maven-mvnd

https://git hub.com/apache/ignite

https://git hub.com/apache/cordova-android

https://git hub.com/apache/dubbo-spring-boot-project

https://git hub.com/apache/cordova-ios

https://github.com/apache/air flow

https://github.com/apache/incubator-seatunnel

https://git hub.com/apache/zeppelin

https://git hub.com/apache/dubbo-admin

https://git hub.com/apache/flink

https://git hub.com/apache/dubbo

https://git hub.com/apache/pinot

https://git hub.com/apache/arrow-datafusion

https://git hub.com/apache/calcite

https://github.com/apache/incubator-hugegraph

https://git hub.com/apache/geode

https://git hub.com/apache/shiro

https://git hub.com/apache/mahout

https://git hub.com/apache/logging-log4j2

https://git hub.com/apache/hudi

https://git hub.com/apache/zookeeper

https://git hub.com/apache/shenyu

https://git hub.com/apache/shardingsphere-

elasticjob https://git hub.com/apache/kylin

https://git hub.com/apache/dolphinscheduler

https://git hub.com/apache/maven

https://git hub.com/apache/rocketmq

https://git hub.com/apache/storm

https://git hub.com/apache/hbase

https://git hub.com/apache/kafka

29

References

Copyright © 2023 Lineaje Inc. Confidential

