
Thank you for downloading this Lineaje report. Carahsoft is the distributor for Lineaje
Cybersecurity solutions available via multiple contract vehicles.

To learn how to take the next step toward acquiring Lineaje's solutions, please check
out the following resources and information:

For additional Lineaje solutions:
carah.io/LineajeSolutions

To set up a meeting:
Lineaje@carahsoft.com
(844)-445-5688

For additional Cybersecurity solutions:
carah.io/Cybersecurity

For more information, contact Carahsoft or our reseller partners:

Crossing Boundaries:
Breaking Trust?

Illuminating the increasing Global
Complexity of an Open-source Software
Supply Chain

For more information, contact Carahsoft or our reseller partners:
Lineaje@carahsoft.com | 888-445-5688

apliska
Cross-Out

https://carah.io/LineajeSolutions
https://carah.io/Cybersecurity
mailto:Lineaje@carahsoft.com

Illuminating the Increasing Global Complexity
of an Open-source Software Supply Chain

Crossing Boundaries:
Breaking Trust?

Lineaje AI Labs Report

Contents
Shining a Light on the Continuous Open-source Software Supply Chain of Vulnerabilities
and Risks 03

04

© 2024 Lineaje. All Rights Reserved.

10 Critical Facts About Open-source Security You Can't Afford to Ignore 05

06

07

1. Opaque Open-source Is Pervasive

• Open-source Code Escapes Governance and is Embedded in Your Applications

• Private First-party Code to Open-source Code Ratios Vary With Stage 07

09

10

2. Open-source is Deep and Diverse

• Mixed Building Blocks Master Assembled Together

• Dependency Chains are Deep, Complex, and Diverse 11

12

13

3. Open-source Lacks Software Integrity Attestation

• What Is Software Supply Chain Integrity Attestation and How Is It Achieved?

14

• Open-source Embeds Other Open-source Whose Integrity is Unattested

• Legacy Software Attestation Technologies Cannot Provide Open-source
 Integrity Attestation

14

16

17

4. Open-source Software Is Global and Often Anonymous

• Global Software Supply Chains Embed Geopolitical Risks

18

• Open-source Contributors are Often Anonymous

• What’s the Lineage of Open-source Software?

24

25

26

7. Version Sprawl! Open-source Usage in Enterprises is Unmanaged

• Multiple Versions of the Same Open-source Component Exist in the
 Same Application

26• Version Sprawl Impact

22

23

24

6. Secure Open-source Components Come from Stable Code Built by
 Mid-sized Teams

• The “Well-maintained” Paradox

• Open-source is Dominated by Small Teams Creating Vulnerable Software 24

• Vulnerability Distribution by Contributor Count and Supplier Type

19

20

20

5. Open-source Is Not Well-maintained

• Embracing Innovation, Ignoring Maintenance: Enterprise Reliance on
 Open-source Software

• Measuring Maintainability of Open-source Software

01

• Lineaje Illuminates the Complete Software Supply Chain

© 2024 Lineaje. All Rights Reserved. 02

Contents

• Choosing to Be More Secure: Using Secure-by-Design Memory-safe Dependencies

• Compiled vs Interpreted Languages Change Your Security Posture

• Vulnerability Prioritization is Mismatched with Vulnerability Remediation

• Even Simple Applications Pull in Complex Open-source Transitive Dependencies

• Software Dependency Structure Impacts Vulnerability Fix Complexity

• Not All Vulnerability Fixes Can be Applied Easily

• Software Structure-based Vulnerability Fixes Are “Almost” Free

• Incompatible Direct Dependency Patching Delivers Large Vulnerability Reduction

9. Open-source Vulnerability Fixing is Complicated & Broken

10. Critical Facts About Lineaje You Can't Afford to Ignore

28

29

30

31

32

33

34

35

36

37

11. Learn more about Lineaje 39

8. Open-source Promotes Unconstrained Polyglotism

• Unmanaged Language Proliferation is Insecure by Design 28

27

Shining a Light on the Continuous Open-source
Software Supply Chain of Vulnerabilities and Risks
Currently, 90% of modern applications use open-source components. A typical application uses about 70%
open source, the rest is private first-party code or third-party code. Lineaje’s research shows some
applications with more than 99% open-source – especially those delivered by software contracting firms. On
average, the following holds for modern applications:

As we use more and more open-source software, it is critical to understand the differences between
managing first-party enterprise code and third-party open-source code. Open-source code essentially runs
with the same privileges as first-party private code and, hence, creates the same risks. However, it crosses
boundaries that private code does not.

• 95% of applications' vulnerabilities and risks come from their open-source dependencies.

• Open-source dependencies in a typical application can span 100+ languages. Most development teams
effectively support 5-6 languages.

• 6.96% of open-source components are of unknown or dubious origin which means your developers
cannot know what they do or whether they are trustworthy.

Open-source Software Crosses Boundaries that Private Code Does Not

Brands are built on trust – in every industry. Trust is built on products crafted with care to deliver an
experience the buyer wants – and needs that are met safely.

Lineaje measures trust using two dimensions: integrity and risk. Integrity ensures that each component is
known and is exactly what we believe it to be – it’s untampered. Risk assesses each component for “Inherent
Risk” – the risk it brings into your software. Together, they create a trust score for each component and each
application you source, build, sell, deploy, or buy. Start by fixing your least trusted components.

You can't secure what you can't see, and you can't improve what you can't assess. Therefore, a clear
understanding of our software supply chain – its components, origins, and dependencies–is paramount.
Armed with this knowledge, we can forge a path toward a truly secure and resilient digital future.

Trust in Critical Software Requires Trust in its Ingredients

© 2024 Lineaje. All Rights Reserved. 03

Open-source packages integrated by application developers are comprised of dependencies from other
open-source packages. These dependency chains can extend up to 60 levels deep, with every level
developed by a different set of contributors. In fact, 68% of components in an open-source package you
source are dependencies pulled from other open-source packages – a pattern that repeats at every level of
the chain. The implication is that your open-source suppliers have no real control over what they pass on to
you and ingest from them – just as you have no control over what you inherit from them. These suppliers
depend on their sub-suppliers for software quality, security, features, and fixes. With No Service Level
Agreements (SLAs) to ensure accountability, unmaintained open-source components age like milk.

Even if enterprises get their open-source dependencies from well-known open-source organizations, these
open-source organizations cannot fix the vulnerabilities in their own dependencies or have any influence over
them. Lineaje’s research of the Apache Software Foundation (ASF) software revealed, 82% of components
in ASF projects are highly risky.

https://www.lineaje.com/research-paper-form?utm_medium=pdf&utm_source=report&utm_campaign=24q4rpt-open-source

© 2024 Lineaje. All Rights Reserved. 04

Over the last year, Lineaje has assessed thousands of business applications, source code repositories,
container images, and shipping products across multiple versions. Lineaje dependency crawlers continuously
assess 5 million plus open-source packages.

As part of these assessments, Lineaje decomposes all applications using its unique dependency crawler
technology, discovering all direct and transitive dependencies and linking their packaged code to their source
code. Lineaje Unified Scanner Hub runs a battery of Lineaje-built and open-source scanners, collecting more
than 170 attributes for each component.

Lineaje’s unique attestation technology deeply fingerprints each component’s package and source code,
enabling Lineaje to decipher whether the package is derived from the source code it claims to be. Linked with
deep dependency crawling technology, Lineaje can attest every shipping component, creating a full supply
chain of trust, discovering tampered, unknown origin, and dubious components in every application,
open-source package, or shipping product.

This report summarizes this data to create insights that Lineaje believes are relevant. Lineaje’s primary data
analysis is creating a deeper understanding of the modern software we source, build, deploy, sell, or buy.

Lineaje serves as a primary data source, providing detailed insights into the composition and origins of
modern software. Simply put, Lineaje offers a comprehensive view of the lineage of modern software.

Lineaje Illuminates the Complete Software Supply Chain

10 Critical Facts About Open-source Security You
Can't Afford to Ignore

Pervasive
Open-source contributes two to
nine times the code your
developers write.

Deep
Open-source embeds 20-60
layers of components from dozens
of open-source organizations
assembled in a complex LEGO-like
structure in a single dependency
your developers include in your
application.

Unattested
5%-8% of components in
open-source dependencies of any
application are unknown,
tampered with, or are of dubious
origin.

Anonymous
20% of American contributors
choose to remain anonymous,
twice the ratio of Russian
contributors and three times that
of Chinese contributors.

Global
United States contributors commit
more code to open-source
projects than those from any other
country, with Russia following
closely.

Unmaintained
Shockingly, unmaintained
open-source is less vulnerable
than well-maintained
open-source, which is 1.8 times
more vulnerable, and mid-sized
teams represent the least risky
projects.

Version Sprawl
More than 15% of components
have multiple versions in a single
application.

Polyglot
A mid-sized application, on
average, pulls in 1.4 million lines
of code in 139 languages and
drags in more risky
memory-unsafe languages.

Safe
Lineaje Open Source Manager
illuminates and manages your
open-source dependencies so you
can source better software.

Vulnerable
95% of all vulnerabilities come
from your open-source
dependencies. Knowing which
your developers can fix, and which
they should not, eliminates at least
50% of vulnerability fix effort.

© 2024 Lineaje. All Rights Reserved. 05

Opaque Open-source Is Pervasive

CHAPTER 1

Open-source code is present in your applications and containers, pulled in by AppDev and DevOps at multiple
stages of software development, integration, and deployment. Just like Shadow IT, which was pervasive in the
last decade, this “Shadow Code” in your applications is pervasive.

Developers pull in open-source components in the applications they build. Containers pull in base OS images
and runtime utilities they need to host application code before they deploy their applications. Open-source
packaged dependencies are pulled into repositories using automated tools. As applications are built,
integrated, and deployed, more and more Shadow Code is added. Almost all of it is opaque to your developers
and DevOps engineers (and the tools they use) who pull them in and should be a fundamental consideration in
today's software security tooling selection and development planning approaches.

Your software supply chain is almost entirely made of open-source software.

Open-source code is added at all stages of the software development lifecycle and contributes two to nine
times the code your developers write.

Open-source Code IS the Software Supply Chain

Quick takeaway

06

Open-source code is present in your applications and containers, pulled in by applications developers and
DevOps at various stages of software development and deployment. Just like Shadow IT, which was pervasive
in the last decade, this “Shadow Code” in your applications is pervasive and two to nine times the volume of
code your developers write.

Developed outside your organization's boundaries, its inner workings and dependencies remain largely
opaque to your developers, hindering their ability to fully assess and mitigate potential risks. In general, the
security profile of open-source development is much laxer than that of enterprise software development.

Open-source code lives in remote open-source repositories and not inside your organization’s boundaries that
your AppSec tools scan. So, while they can detect these top-level dependencies in your code, they really do
not scan the source code repositories and packages that your code relies on. This oversight leads to the
deployment of open-source components without adequate AppSec and SCA scrutiny, exposing applications
to potential vulnerabilities and risks.

Open-source Code Escapes Governance and is Embedded in Your
Applications

Detecting dependencies is not the same as
trusting their lineage. Just like mere
detection of a person’s existence is not a
measure of their Trustability, their
Children’s Trustability, and their Grand
Children’s Trustability.

Additionally, current AppSec tools deployed by
organizations to scan their applications are unable
to effectively scan open-source code, leaving
organizations vulnerable to hidden risks and
potential non-compliance with internal security
standards.

Private First-party Code to Open-source Code Ratios Vary With Stage

If your open-source security approach only
involves scanning source-code repositories,
like many SCA tools do, you are not
assessing all the open-source your
organization consumes.

Lineaje analysis reveals that the percentage of open-source code varies based on application type and stage
of development. Open-source packages are pulled in at different stages of the Software Development Life
Cycle.

• Enterprise-built internal applications use more
open-source code than those built for commercial
sale. In general, ProdSec teams are more diligent
about open-source selection and maintenance
than AppSec teams.

• Greater private Intellectual Property (IP) is being
created in applications built for sale, while
internal business applications are much more
commoditized and use open-source more freely.

• Containers, as expected, contain more open-source components than the application code they host, as
much of the Operating System stack transitions to open-source Linux distributions.

A key takeaway is that if your open-source security approach involves scanning only one of source–code
repositories, artifactories, or containers – you are not assessing all the open-source your organization
consumes. Independent scanners for each stage of the SDLC fail to connect obvious dots, have their own
limitations, and create a false sense of security for organizations.

© 2024 Lineaje. All Rights Reserved. 07

What is in your software?

Internal Application
(High Regulation) Product We Buy Internal Application

(Normal) Containers

50%

20%

30%

72%

25%

2%

85%

14%

0%

96%

1%

3%

Open-source

Private

Third-party

Open-source Private Third-party

Containers

Internal Application (Normal)

Product We Buy

Internal Application (High Regulation)

0% 20% 40% 60% 80% 100% 120%

96%

85%

72%

50% 20% 30%

25%

14%

1%

3%

0%

2%

Lineaje Unified Scanner Hub can extend your AppSec tools to scan the source code and packages of
ALL your open-source dependencies that existing AppSec and next-gen SCA tools cannot do on their
own.

© 2024 Lineaje. All Rights Reserved. 08

CHAPTER 2

Open-source is Deep and Diverse
Imagine trying to build a tower using LEGO blocks, K'NEX pieces, and wooden blocks all at once - that's
open-source. Your open-source developers are master builders who can pull the pieces together, but each
piece comes from different toy manufacturers with different standards and fits.

Modern open-source "structures" typically stack 20-60 layers deep, mixing pieces from different
manufacturers far beyond the top-level components developers directly place. These hidden connections
(transitive package dependencies) remain invisible to developers, yet one incompatible piece could
destabilize the entire structure – and that makes open-source maintenance particularly difficult.

Open-source Embeds More Open-source from Different Providers at Each
Level
Components from hundreds of open-source organizations are fitted together in a complex LEGO-like structure to
assemble a single dependency your developers include in your application.

Quick takeaway

09

Open-source Embeds More Open-source
which Embeds More Open-source which
Embeds More Open-source which…

Mixed Building Blocks Master Assembled Together

In each open-source package, your developers embed packages from other open-source developers. Often,
the “supplier” in open-source changes with each transitive dependency. These components can come from
large open-source projects open-sourced by players like Google, Baidu, and Facebook to smaller open-source
projects staffed by a few volunteers and in many cases, no full-time volunteers.

is part of your application. The reliability and security of your application directly depend on each open-source
project's ability to evolve and maintain their components.

Each transitive dependency may be used in hundreds of other packages as well and is not designed to be a
custom fit for this specific parent that includes it and that dragged it into your application. This creates a very
complex network of co-dependent packages that are “Master-Assembled” and operate together.

Each of these nested components evolve at different rates and on an independent schedule. This means that
newer fixed versions of sub-components are available at different times and may not be taken up-even when
available – by the direct open-source projects you depend on.

Updating open-source to “latest fixed versions” of these nested components will frequently break your direct
dependency. Recertifying these direct dependencies that break your developers just sourced but did not
build is expensive and complex. This is the single biggest reason why developers cannot easily just pull in a
new version of a deeply embedded component without breaking your business application. AppSec teams
and tools do not understand software structure.

Each of these "open-source projects" that your
dependency drags in is now part of your software
supply chain. There is high likelihood that code
developed by very smart engineers from Google,
Meta, Twitter, Baidu, IBM, Oracle, etc.

Updating Open-source to “Latest Fixed
Versions” of nested components will
frequently break your direct Open-source
dependency, your application or your
deployed container.

Updating children of a direct open-source
dependency is complex. While in some cases, the
updated versions of nested components may be
compatible to other components master-assembled
together by open-source developers, they
frequently are not.

© 2024 Lineaje. All Rights Reserved. 10

Dependency Chains are Deep, Complex, and Diverse

An analysis of Apache eCharts used in 280,000 projects shows us the number of components and their main
contributors up to 21 layers deep!

Open Source Components

Open-source Embeds Other Open-source Components

10

D
ependency Tree D

epth

Su
pp

lie
rs

 a
nd

 N
um

be
r o

f c
om

po
ne

nt
s

pr
ov

id
ed

Tj, Twitter, W8Tcha

11

9

24

76

98

95

49

31

27

29

33

38

23

13

11

19

Codeseven, David Stutz, Jquery, Liady, Moment,
Sun...
Alexei, Babel, Cowboy, Dylang, Wddyerburgh,
Epicmiller,...
Acornjs, Avoidwork, Babel, Bevacqua,
Blakeembrey,...
Babel, Blakeembrey, Components, Cowboy,
Debug-JS,...
Acornjs, Ade Viankakrisna Fadlil, Ashtuchkin,
Bahamas 10,...
Abbr, Acornjs, Ajv-Validator, Antir, Babel,
Bestiejs, Bevry,...
Acornjs, Andris9, Anodynos, Aria, Ariaminaei,
Ashtuchkin,...
Ahmadnassri, Babel, Browserify, Crypto-
Browserify,Css-...
Ahmadnassri, Babel, Bestiejs, Calvinmetcalf,
Cheeriojs,...
Andyperlitch, Arekinath, Ariaminaei, Babel,
Cheeriojs,...
Babel, Browserify, Component, Crypto-
Browserify, Es-...
Crypto-Browserify, Es-Shims, Facebook,
Inspect-Js,...

Babel, Facebook, Inspect-Js, Ljharb, Qix-

Babel, Crypto-Browserify, Es-Shims, Feross,
Inspect-Js,...

Babel, Inspect-Js, Ljharb

Babel, Chimurai, Inspect-Js, Svg, Vuejs

Babel, Es-Shims, Faceboo, Ljharb, Vuejs

Esshims, Facebook, Inspect-Js, Ljharb

Amaimersion, Amasad, Facebook, Webdeveric,
micromatch

Babel, Facebook, Paul Miller, Webpack-Contrib

Facebook, Jantimon, Jest, Vuejs, Webpack

Direct Dependency

195

242

207

173

165

Layer 21

Lineaje Dependency Crawler technology creates the deepest supply chain dependency tree in the industry.

Lineaje Dependency Crawler technology crawls the package and source code of each dependency to discover its
dependencies. Then it crawls the package and source code of each dependency discovering their dependencies
and continues to do so till there are no more dependencies. This is similar to web crawling technologies that can
illustrate a complex inter-connected web by crawling through each URL to its connected URLs.

© 2024 Lineaje. All Rights Reserved. 11

CHAPTER 3

Open-source Lacks Software Integrity Attestation
Software integrity attestation is the capability to ensure what you deploy is what you build and what you build
comes from your source code. And what you sourced is identical to what was published by the open-source
developers who published that package, and each nested package in that dependency is exactly identical to
what was published by the open-source developers – at each of the 20+ levels in your software supply chain.
And on top of it, attesting that each package is actually built from the source code it came from.

Enterprises embed open-source components without verifying if they are untampered or contain components
of unknown Lineage and capabilities. Unsurprisingly, because open-source’s integrity is trusted but not
verified, it frequently breaks Trust. Because it is assumed transparent, but transparency is unverified, it is
frequently Opaque. Because open-source developers cannot validate their dependent’s code, it is frequently
Unknown.

Given its open contribution model, open-source code is more easily tamperable than private code
repositories. Smart state actors, malware writers, and attackers can use one tamper in open-source to attack
hundreds of organizations in one effort.

5%-8% of components in open-source dependencies of any application are unknown, tampered with, or are
of dubious origin.

Quick takeaway

12

What Is Software Supply Chain Integrity Attestation and How Is
It Achieved?

The internet was built on trust. As the internet became popular and commercially important, it was exploited
in thousands of ways – from stealing our identities, to ransoming our data, to shutting down water and
electricity, to disrupting elections. A connected world with smart malicious attackers and state actors is
dangerous. All these compromises have predominantly been “After the fact” attacks exploiting vulnerabilities
in software we use, social weaknesses in people, and deeply technical malicious code.

Critical software manages our water, electricity, retail stores, banks, government services, our defenses –
almost every aspect of our daily lives. The builders of this software use open-source extensively but do not
attest to its integrity. And so, the majority of the software that our lives depend upon – is pulled into our
applications, is opaque and lacks Software Integrity Attestation.

Because open-source developers cannot validate dependent’s code, it is frequently Unknown. You get what
you trust but Verify, open-source’s Software Integrity is not attested by Enterprises and Governments that
consume it to build our critical systems!

Given its open contribution model, open-source code is more easily tamperable than private code
repositories. Smart state actors, malware writers, and attackers can use one tamper in open-source to attack
hundreds of organizations in one effort.

Unsurprisingly, because open-source is
assumed transparent, it is frequently opaque.

Open-source developers cannot validate
their dependent’s code nor can your
developers. Embedded open-source in all
applications is unverified.

The world of open-source software powers the
internet, and the applications that run on it, and
our enterprises use it to massively digitally
transform their operations.

Unsurprisingly, because open-source’s integrity is
trusted but not verified, it frequently breaks Trust.
Because it is assumed transparent but transparency is
unverified, it is frequently Opaque.

© 2024 Lineaje. All Rights Reserved. 13

Legacy Software Attestation Technologies Cannot Provide Open-source
Integrity Attestation

We would not buy a $2 can of soup if 7% of
ingredients were of dubious origin. Should
your critical software contain known
components of dubious origin?

Most applications – that embed open-source – end
up with integrity issues in the open-source they
embed. Lineaje automatically assesses and attests
the software integrity of all open-source software it
scans. Analysis of thousands of enterprise
applications reveals the following pattern:

Software integrity attestation is the capability to ensure what you deploy is what you built and what you built
comes from your source code. And what you sourced is identical to what was published by the open-source
developers who published that package, and each nested package in that dependency is exactly identical to
what was published by the open-source developers – at each of the 20+ levels in your software supply chain.
And on top of it, attesting that each package is actually built from the source code it came from.

Attesting to the integrity of all software you source is harder than that of software you build in-house. It is
built outside your organization, so build-centric integrity checks cannot attest to that. Just like your AppSec
tools do not assess the risk in your software supply chain, they cannot attest to the integrity of the direct
components you source and their supply chains. At the same time, compromises like 3CX, XZ Utils, and others
have proven that existing AppSec and SCA tools fail to detect open-source tampers.

In recent years, code signing techniques and “build-system” driven attestations (such as Google’s SLSA
approach) have been advocated as valid software integrity attestation solutions. Attacks like XZ demonstrate
that these attestation techniques check the compliance box but fail to achieve the basic goal of attestation –
detecting software tampers. In fact, they create a reverse issue – the illusion of untampered software when
they certify the attestation of software they know little about. Just because an approach like SLSA attests to
the code you build in your CI/CD pipeline, it does not mean that the code built outside your CI/CD pipeline is
attested.

Open-source Embeds Other Open-source Whose Integrity is Unattested

Open-source embeds other open-source whose integrity is unattested by open-source developers who
select and include those dependencies in components we ingest into our software. Given their diversity,
open-source developers have no way to check the integrity of the packages they depend on. Enterprise
Software Systems also inherently trust open-source and have not invested in attesting the integrity of
open-source software they consume.

© 2024 Lineaje. All Rights Reserved. 14

Approver Approved? Date Note

Percent of
Components Implication

The threat that
would be
detected with
this capability

Trustworthiness What it means

6.96% Dubious Origin Stop Ship :
Your software contains
unknown components

� Manipulation of software
update/distribution
mechanisms

Revival hijack
SC-Attacks

The component does
not exist where the
open-source
component your
developers sourced
asserts to originated
from.

0.47% Minimally
Accepted
Trust level

Minimally Acceptable Integrity
Attestation for All
Components in your software

While the
component is
trustworthy, its
dependencies
may not be

The component used
in the parent is exactly
what was published
by the open-source
developer who
published that
component

92.57% Trustworthy Known Origin, Attested
Software Integrity

Certified original.
While the
component is
trustworthy, its
dependencies may
not be. May still be
risky due to
vulnerabilities,
code quality,
security posture,
geo-provenance,
anonymous but
authorized
contributors, etc.

The component used
in the parent is
exactly what was
published by the
open-source
developer who
created it. The
source code tied to
the component is
verified to be the
source code of the
published package.

Variable Tampered 3CX, XZ,
SolarWinds

The component
exists in
open-source, but
what your software
contains is provably
different.

Stop Ship :
Your software contains
components that are clearly
“updated”

� Manipulation of
development tools,
development environment,
source code repositories
(public or private), source
code in open-source
dependencies

� Compromised/infected
system images, replacement
of legitimate software with
modified versions

This is probably an attack
that would harm your users

Lineaje Attestation Engine automatically attests to the integrity of each open-source and private component in
your application and alerts you on any component that is not fully trustable. It’s the only technology that can
attest all open-source software you use in your applications and detect inherent tampers in open-source you
consume.

© 2024 Lineaje. All Rights Reserved. 15

CHAPTER 4

Open-source Software Is Global and Often
Anonymous
A key strength of open-source software is its collaborative development by a global community of
developers. However, as geopolitical tensions rise, state actors take a deeper interest in supply chain
compromises, and digital dominance increasingly leads to economic and security dominance –
geo-provenance of software is scrutinized deeply.

Governments and Defense departments have long required that all private software they buy be built
locally. Now, as software supply chain concerns rise, compliance mandates requiring components of
critical software exclude code from adversarial geographies.

Geo-provenance constraints are particularly hard on open-source components, given the complete lack
of control over geo-commits and geo-contributions. However, a pattern is emerging – the more critical
the software application, more is the concern around the geo-provenance of both the open-source and
private code it embeds.

A typical mid-size application can have contributions from several countries.

United States contributors commit more code to
open-source projects than those from any other country,
with Russia following closely. However, a notable 20% of
American contributors choose to remain anonymous, twice
the ratio of Russian contributors and three times that of
Chinese contributors.

Quick takeaway Country % Commits

United States

Russia

Canada

United Kingdom

Brazil

Germany

China

New Zealand

34%

13%

9%

7%

6%

3%

1%

1%

16

Global Software Supply Chains Embed Geopolitical Risks

The COVID-19 pandemic served as a stark wake-up call, exposing the critical importance of software supply
chain security on a global scale. As geopolitical tensions escalate and software underpins increasingly vital
systems, the provenance of our code has become a matter of paramount national and economic security. This
heightened awareness has spurred a wave of regulations aimed at fortifying global software security
protocols.

A prime example is the recent Notice of Proposed
Rulemaking (NPRM) issued by the U.S. Department
of Commerce's Bureau of Industry and Security
(BIS) on September 23, 2024. This significant
measure would prohibit the sale or import of
connected vehicles containing specific hardware
and software components or those components
sold separately, with a sufficient nexus to the
People's Republic of China (PRC) or Russia. The
prohibitions on software would take effect for Model
Year 2027, and the prohibitions on hardware would
take effect for Model Year 2030 or January 1, 2029,
for units without a model year.

In parallel, the EU New Product Liability Directive
adopted on October 10, 2024, shifts liability to
manufacturers of products included in defects even
when they are compromised by components they
source, putting a new focus on what software
producers choose to include in their products.

© 2024 Lineaje. All Rights Reserved. 17

“Cars today have cameras, microphones, GPS
tracking, and other technologies connected to
the internet. It doesn’t take much imagination
to understand how a foreign adversary with
access to this information could pose a serious
risk to both our national security and the
privacy of U.S. citizens. To address these
national security concerns, the Commerce
Department is taking targeted, proactive steps
to keep PRC and Russian-manufactured
technologies off American roads,”
U.S. Secretary of Commerce Gina Raimondo,
Sep 23, 2024

What’s the Lineage of Open-source Software?

An analysis of over 15 million commits tied to enterprise applications reveals the distribution of contributions
from top countries. The United States and Russia together account for nearly half of all open-source
contributions, illustrating the challenge of achieving a Russia-free open-source ecosystem.

Country Commits* % Commits

United States

Russia

Canada

United Kingdom

Brazil

Germany

China

New Zealand

5,134,722

1,910,842

1,320,662

1,037,009

982,109

408,704

216,552

155,551

34%

13%

9%

7%

6%

3%

1%

1%

Code-commit Contributions by Country

0
2
4
6
8
10
12
14
16
18
20
22

© 2024 Lineaje. All Rights Reserved. 18

*Total Commits: 15,250,139

Open-source Contributors are Often Anonymous

Enterprises building private software, startups creating new Intellectual Property (IP), and software
contractors writing software for their customers routinely contribute software under their names. In fact all
software commits in most serious enterprise software development shops can only come from verified
developers committing code from secure, attested machines.

Open-source developers work from wherever they want, use personal devices, and frequently use anonymous
and unverified accounts. They often choose to remain anonymous, which poses a higher risk than known,
authenticated open-source contributors. The number of unknown contributors from Russia is about half that
of the United States, while unknown Chinese contributors are about a third of the U.S. figure.

Top 10 Unknown and hence risky contributions come from the following countries:

Country %Known %UnknownKnown Contributors Unknown Contributors

15,051 3,957 79.2% 20.8%

1,139 264 81.2% 18.8%
5,329 997 84.3% 15.7%
6,189 1,070 85.3% 14.7%
5,071 783 86.6% 13.4%
5,071 783 86.6% 13.4%
9,272 1,392 86.9% 13.1%
16,141 2,178 88.1% 11.9%
1,519 138 91.7% 8.3%
4,002 286 93.3% 6.7%

United States
Australia
Canada
Brazil
Great Britain
Spain
Germany
Russia
Japan
China

Lineaje Open-source Crawler:
The Lineaje Open-source Crawler autonomously gathers the geo-provenance of all open-source
components used, tracking down to individual commits and authors. This enables comprehensive
control of your entire software supply chain by geographic location.

Top 10 Countries with Hidden Risks from
Unknown Open-source Contributors

High LowMedium

© 2024 Lineaje. All Rights Reserved. 19

10

Open-source Is Not Well-maintained

CHAPTER 5

Open-source software, fueled by a global community of developers, has become a critical catalyst for
accelerating software development and digital transformation in enterprises. The resulting efficiencies and
cost savings are estimated to exceed a staggering $450 billion annually. More than 90% of modern
applications embed open-source components.

As successful open-source projects grow, they require increasing maintenance efforts. The exciting work of
building new features gives way to the mundane but crucial task of fixing and maintaining existing code. Over
time, fewer developers shoulder the burden of maintaining expanding codebases as others move on to new
projects.

67.6% of open-source components used by organizations are not well-maintained, leaving critical software
applications vulnerable to security breaches, performance issues, and costly downtime.

Without active open-source management, organizations are exposed to significant risks that can disrupt
operations and damage their reputation.

Quick takeaway

20

© 2024 Lineaje. All Rights Reserved. 21

Embracing Innovation, Ignoring Maintenance: Enterprise Reliance
on Open-source Software

With over 90% of modern applications embedding open-source code, enterprises heavily rely on open-source
components to drive innovation and digital transformation. This dependency results in estimated annual
savings exceeding $450 billion.

Open-source development is often unpaid and driven by volunteers passionate about innovation. As projects
grow, the maintenance burden increases, diverting focus from new features. Maintaining and fixing code
becomes increasingly complex, falling on a shrinking pool of developers even as the total lines of code expand
with each version. Unmaintained open-source components can deteriorate quickly, akin to milk, not wine.
Critical dependencies may become obsolete as developers shift focus to new trends, leaving vital projects
abandoned and risking critical enterprise applications that embed them.

Measuring Maintainability of Open-source Software

Tech debt piles up quickly in software development. Vulnerabilities are being discovered earlier and faster. To
keep open-source software secure and usable by enterprises, open-source software must also be maintained.
In an era where software is frequently updated hundreds of times a day, it is hard to argue that unchanging
software is well-maintained.

Lineaje assesses the maintainability of applications and their dependencies automatically. By default, we
apply the following definitions:

Just as startups must evolve their products for enterprise deployment, so must successful open-source
projects. However, unlike commercial products, open-source software lacks dedicated support teams or
contractual obligations, relying instead on engineers with innovative ideas and the skills to bring them to life.

While some open-source projects successfully transition, many struggle to maintain the same level of
innovation and support as required by commercial applications. The maintenance burden inevitably rises with
wider adoption, further detracting from innovation.

Open-source Maintenance efforts are rarely
prioritized and often do not match
Enterprise standards.

Enterprise enhancement requests further dilute
innovation, challenging the premise that
dependencies accelerate innovation.

No fix in the last 2 years

Fixed in last 6 months to 2 years

Fix available in last 6 months

Unmaintained

Criteria

Well maintained

Maintained/ Grey OSS

The distribution of a typical medium-complexity application is shown below.

Over 67.6% of open-source components used by organizations are not well-maintained, leaving critical
software applications vulnerable to security breaches, performance issues, and costly downtime. Without
active open-source management, organizations are exposed to significant risks that can disrupt operations
and damage their reputation.

No fix in the last 2 years 806

541

323

48.3%

32.4%

19.3%Fixed in last 6 months to 2 years

Fix available in last 6 months

Unmaintained

Criteria Count %

Well maintained

Maintained/ Grey OSS

0 50 100 150 200

Direct

TL3

TL6

TL9

TL12

TL15

TL18

TL21

Count of Components

D
ep

en
de

nc
y

D
ep

th

Direct TL1 TL2 TL3 TL4 TL5 TL6 TL7 TL8 TL9 TL10 TL11 TL12 TL13 TL14 TL15 TL16 TL17 TL18 TL19 TL20 TL21

Unmaintained 5 8 17 51 104 147 113 71 78 50 49 24 18 19 16 5 6 7
6Gray OSS(6mn-2yrs) 1 2 2 16 57 56 38 46 37 12 14 6 1 2 3 2 12

Well Maintained 3 5 7 25 57 56 77 64 50 37 32 19 12 6 10 26 20 10

5
2
6

5
1
5

7
5
7

1
2
7

OSS Component Distribution

Lineaje Open Source Manager automatically segments your open-source into unmaintained,
maintained, and well-maintained open-source depndencies and drives workflows and remediation that
is appropriate for each category of open-source.

© 2024 Lineaje. All Rights Reserved. 22

© 2024 Lineaje. All Rights Reserved. 13

Secure Open-source Components Come from
Stable Code Built by Mid-sized Teams

CHAPTER 6

Rapidly changing open-source components while offering new features inherently introduces more
vulnerabilities and risks. This is because each update brings the potential for new bugs, compatibility issues,
and unforeseen interactions with existing code. On the other hand, unmaintained components become
increasingly vulnerable over time due to the lack of security patches and bug fixes for newly discovered
exploits. Hence, there is a fine balance between Innovation that enhances Risk and Maintenance that
enhances Security.

Additionally, open-source projects of all sizes exist, with contributors varying from a handful to large teams.
Just like enterprise teams, small, tightly-knit open-source teams deliver a lower vulnerability open-source
project than those with larger teams.

Well-maintained open-source is 1.8 times more vulnerable than unmaintained open-source, and mid-sized
teams represent the least risky projects.

Quick takeaway

23

© 2024 Lineaje. All Rights Reserved. 24

Well-maintained open-source software is 1.8
times more vulnerable than unmaintained
open-source software.

The “Well-maintained” Paradox

Enterprise software developers know this well – software that changes a lot with every version is more buggy.
The same is true for open-source software.

Lineaje measures vulnerabilities, code quality,
security posture, and multiple other quality
dimensions of open-source it assesses automatically.
We arrive at a set of paradoxical results:

• Well-maintained components show the highest vulnerability rate, suggesting that active development
and frequent updates might inadvertently introduce more security issues.

• Both maintained and Unmaintained open-source software projects have lower vulnerability rates,
suggesting that open-source developers try to leave projects in a good state even as they move on.

Vulnerability Distribution by Maintenance Status

3.7%

2.0%

2.0%

Well-maintained

Vulnerable Components %Maintenance Status

Moderate Updated

Unmaintained

Open-source is Dominated by Small Teams Creating Vulnerable Software

A related factor is the size of teams that work on an
open-source package. About 2/3rd of open-source
software is created by small teams of less than 10
contributors. These teams band together to deliver
an innovative capability. However, this suggests that
limited resources and oversight in small teams may
lead to security oversights and maintainability issues
over time.

The "Goldilocks zone" of 50 contributors: About a fifth of all open-source software is created by mid-sized
teams. These teams represent open-source code with the best security and quality metrics. The vulnerability
rate in their open-source software is the lowest – at 1.0% reflecting an optimal balance between coordination
overhead and sufficient resources for security oversight.

Diminishing returns of large teams: Projects with over 50 contributors are fewer and show an increase in
vulnerability rate (1.4%) compared to mid-sized teams. Large projects are more complex, and adding more
contributors doesn't improve security and leads to more vulnerabilities.

About 2/3rd of all open-source software is
created by teams of less than 10 contributors
and has 3 times the vulnerabilities of
open-source created by mid-sized teams.

Vulnerability Distribution by Contributor Count and Supplier Type

66.7%

19.6%

13.5%

4,591

1,348

931

3.3%

1.0%

1.4%

<10 Contributors

Total PackagesContributor Count % of Packages Vulnerable Components %

11-50 Contributors

>50 Contributors

Lineaje continuously monitors your open-source packages for vulnerabilities, automatically alerting you
to new issues and providing a minimal-effort fix plan built by Lineaje AI.

Version Sprawl! Open-source Usage in
Enterprises is Unmanaged

CHAPTER 7

Once an open-source package is used within an enterprise, it is utilized multiple times by developers to
accelerate development. As more and more developers use the same package, they all use the current
version available to them. As they update the components they build, they may update to later versions.
These changes are not synchronized, given most organizations do not manage their open-source
dependencies. This creates a version sprawl – the fact that multiple versions of the same open-source
package exist in one organization's business applications complicating reachability, vulnerability prioritization,
and remediation.

Version Sprawl! More than 15% of components have multiple versions in a single application.

Quick takeaway

25

© 2024 Lineaje. All Rights Reserved. 26

Multiple Versions of the Same Open-source Component Exist in the
Same Application

Business applications and open-source packages are built modularly. Different developers work on each
module. They may use the same components in their code, but they may not update and upgrade these
versions simultaneously. So, multiple versions of the same component exist simultaneously in the same
package at different depths of the transitive dependency chain.

 Once used in an application multiple times, developers rarely go back and synchronously upgrade to
“Approved” versions. The primary reason is a complete lack on investment in active management of
open-source software used in an enterprise beyond some basic Vulnerability Management.

Version Sprawl complicates software
updates, reachability analysis, and
compatibility testing, increasing software
complexity dramatically.

Each version must be upgraded separately, and
each version must be considered independently.
Each version potentially has a different compatibility
matrix, creating a cascading set of multiple versions
of other components.

Version Sprawl Impact

Analysis of applications deployed in enterprises showcases a pattern. About 14% of all open-source
components are used more than once in applications, and version sprawl increases exponentially across
multiple applications.

For example, enterprises have had a hard time
getting past the Log4jShell vulnerability. A key
reason is the lack of management control over
open-source used by developers. Version sprawl
is a leading indicator of how badly maintained any
application or its dependency is.

The bigger the version sprawl in your dependencies, the more costly they are to maintain and the more
insecure your application. The version sprawl of a medium-complexity application is shown below.

Number of versions
1 2 3 4

N
um

be
r o

f c
om

po
ne

nt
s

Multiple Versions of Same Component

1600
1400
1200
1000
800
600
400
200

0

1220
150 43 7

Lineaje Assessment Engine automatically detects version sprawl in private, third-party, and
open-source dependencies in you application and recommends the most compatible and secure
application and version with a click.

The bigger the version sprawl in your
dependencies, the more costly they are to
maintain, and the more insecure your
application.

Open-source Promotes Unconstrained Polyglotism

CHAPTER 8

Most software engineering organizations write private/first-party code in less than 10 languages. Expanding
the list of languages they support requires investment in incremental resources and tools and is a careful
decision.

However, when open-source dependencies are included inside private code, enterprises do not seem to
consider the languages of their third-party and open-source dependencies and the implications of adding
memory-unsafe languages – making their applications more insecure.

Developers cannot fix what they don’t know. This language proliferation through open-source dependencies
tests the limits of engineering teams. Their ability to find and fix issues in their open-source dependencies is
limited to languages they know. Even their current tools, like SCA, provide support for a handful of first-party
languages, and hence their “discovery” and “reachability” assertions only apply to a small subset of
dependencies.

A mid-sized application, on average, pulls in 1.4 million lines of code in 139 languages and drags in more risky
memory-unsafe languages.

Quick takeaway

27

© 2024 Lineaje. All Rights Reserved. 28

Unmanaged Language Proliferation is Insecure by Design

A typical mid-sized application analyzed by Lineaje has 139 languages in its open-source dependencies. These
dependencies pull in 1.4 million lines of code! The cost of delivering these dependencies by private developers
with a productivity of 50 lines of code a day would be more than 100 person-years.

Choosing to be More Secure: Using Secure-by-Design Memory-safe Dependencies

Beyond developer productivity, language selection plays a key role in software security. Memory-safe
languages include Rust, Go, C#, Java, Swift, Python, and JavaScript. Languages that are not memory-safe
include C, C++, and assembly.

How big an issue is memory safety? In April 2023, the National Security Agency (NSA) joined the
Cybersecurity and Infrastructure Security Agency (CISA) and U.S. and international partners to publish a
report, The Case for Memory-safe Roadmaps. They presented the following statistics arguing that
enterprises actively move to memory-safe languages:

• About 70% of Microsoft's Common Vulnerabilities and Exposures (CVEs) are memory safety vulnerabilities
(based on 2006-2018 CVEs).

• About 70% of vulnerabilities identified in Google’s Chromium project are memory safety vulnerabilities.

• In an analysis of Mozilla vulnerabilities, 32 of 34 critical/high bugs were memory safety vulnerabilities.

• Based on analysis by Google’s Project Zero team, 67% of zero-day vulnerabilities in 2021 were memory
safety vulnerabilities.

Languages Used to Build Your OSS

...

javascript

shell

java typescript rust

other

typescript
typings

html

go toml makefile

python

batch

prolog

groovy c css

kotlin

c++

free…

xslt

aspe… bat… c… i…

p…

r…

ja…

d…

p…

s… v… p… l… n…

a…

c…

b…

h…

c… a… t… a… fl…
s…
s…
s…
p…
s…

o…
r

c…
p…
b…

css

kotlin

javascript

shell

java

typescript

rust

other

typescript typings

html

go

toml

makefile

python

batch

prolog

groovy

c

A key recommendation of the report is for enterprises to phase out memory-unsafe languages from their
applications.

© 2024 Lineaje. All Rights Reserved. 29

Compiled vs Interpreted Languages Change Your Security Posture

Compiled languages are generally considered more secure than interpreted languages because they translate
code into machine code before execution. This allows for stricter checks and optimizations during
compilation, resulting in faster performance and better control over memory management. Interpreted
languages execute code line-by-line at runtime, making them more vulnerable to security exploits like code
injection attacks due to the exposure of source code during execution.

A bias towards using compiled languages creates less exploitable applications.

• Examples of compiled languages include C, C++, C#, Rust, Erlang, Go, etc.
• Examples of Interpreted languages include Python, JavaScript, PHP, Ruby, etc.

Lineaje AI Plan can discover all languages used in your dependencies and in your code and make
recommendations on language “substitution” to create more secure applications.

Open-source Vulnerability Fixing is Complicated &
Broken

CHAPTER 9

Software Developers are master assemblers of software. AppSec tools live in a DIY world and make terrible
assumptions. Just like it is foolhardy to expect a great DIY carpenter to fix a complicated smart TV, expecting
your developers to fix every security flaw in software they didn’t build is foolhardy. Even with the best tools,
the carpenter cannot open up and take a chip out of the motherboard and replace it. The carpenter can
certainly fix the TV stand! Today’s software is more complicated than a smart TV.

As applications embed more open-source code, the potential attack surface expands dramatically.
AI-powered tools like Google's Big Sleep are revolutionizing vulnerability discovery, uncovering flaws
previously hidden from traditional scanners. This means organizations will face an unprecedented surge in the
number of vulnerabilities requiring immediate attention.

Current approaches to vulnerability prioritization do not consider developer remediation challenges like
software structure, dependency graphs, the complexity of direct dependency upgrades versus transitive
dependency upgrades, component interaction intensity, rate of code changes and their reachability changes,
or container rebuild rate, making it impossible for organizations to get on top of their vulnerability backlog and
overwhelming developers with sub-optimal AppSec priorities.

Quick takeaway

95% of all vulnerabilities come from your open-source dependencies. Knowing which your developers can fix,
and which they should not, eliminates at least 50% of vulnerability fix effort.

30

© 2024 Lineaje. All Rights Reserved. 31

Vulnerability Prioritization is Mismatched with Vulnerability Remediation

Various AppSec scanners, including deep vulnerability scanners, find vulnerabilities and weaknesses in the
components they scan. These vulnerabilities are prioritized by severity, exploitability, and reachability and
then assigned to developers to fix.

Our software changes continuously. Modern
software development runs through a CI/CD pipeline
– Continuous Integration/Continuous Deployment.

Lineaje has customers that make a million updates a
day to production software. These changes drag in
new components, update existing ones, and create
new code paths – creating a need for reprioritization
of vulnerabilities.

AppDev leaders focused on digital innovation are
incurring significant overhead from vulnerability
remediation efforts impacting their innovation and
business goals. Reactive scanning and prioritization
by AppSec is disruptive, and insistence on fixing by
priority is disruptive and ignores the size of the fix
effort. Prioritizing large, complex fixes creates a
bottleneck in enterprise resources that deprioritizes
simpler, highly impactful security improvements.

“My desired outcome is to automate the
process of aggregating, consolidating,
contextualizing, attributing, and monitoring
vulnerabilities” - Cutting-edge AppSec
Leader

“We cannot achieve business goals if we
are expected to meet AppSec dmands on
their timelines” - Big Financial AppSec
Leader

© 2024 Lineaje. All Rights Reserved. 32

0

1

tc_service

Depth level

0

0

Third
Party

2

0

Private

0

36

Open-source
Components

0

18

Open-source
Well Maintained

0

7

Open-source
Maintained

0

9

2

3

0

0

0

0

85

73

41

31

17

15

27

26

4

5

0

0

0

0

47

4

17

2

17

0

13

2

Open-source
UnmaintainedProject name

Direct Dependecies

Transitive Dependencies

Transitive Dependencies

Transitive Dependencies

Transitive Dependencies

6

Total

0 01 0 0 1

0 1%246 44% 23% 32%

Transitive Dependencies

Number of components by Dependency Level

Tc_service has 2 private components that use 36 direct open dependencies. Application developers selected
and included these in their private components. However, these 36 components pull in 208 additional
open-source components. These 208 components are typically not from developers who built the direct
dependencies and are opaque to the developers who included them in their code.

Lineaje’s analysis routinely shows that software
supply chain trees are up to 60 levels deep due to
the simple fact that open-source components often
embed other open-source components, creating
deeply nested dependencies. However, even
updating simple applications is complex. To
illustrate this concept, we use a simple application
in a widely distributed product.

Even simple open-source direct
dependencies pull in an additional 600% of
opaque transitive dependencies that
developers and AppSec cannot see.

Even Simple Applications Pull in Complex Open-source Transitive
Dependencies

© 2024 Lineaje. All Rights Reserved. 33

Software Dependency Structure Impacts Vulnerability Fix Complexity

Tc_service has 73 vulnerabilities. 13 of them are in direct components and 60 in transitive components.

Upgrading transitive dependencies will frequently break the direct dependency. Developers then have to
perform the complex task of fixing a dependency they did not build.

0

1

tc_service

Depth level

0

0

Low
Vulnera-
bilities

0

1

Unkown
Vulnera-
bilities

0

13

Open-source
Components

0

2

Critical
Vulnerabilities

0

9

High
Vulnerabilities

0

1

2

3

0

1

0

0

16

36

3

1

7

13

6

21

4

5

0

0

1

0

7

1

0

0

3

1

3

0

Medium
VulnerabilitiesProject name

Direct Dependecies

Transitive Dependencies

Transitive Dependencies

Transitive Dependencies

Transitive Dependencies

6

Total

0 00 0 0 0

1 273 6 33 31

Transitive Dependencies

Open-source Vulnerabilities

When we use a new version of a direct dependency, it will pull in transitive dependencies it is certified and
tested against. Upgrading transitive dependencies will frequently break the direct dependency. Developers
then have to perform the complex task of fixing a dependency they did not build.

© 2024 Lineaje. All Rights Reserved. 34

0

1

tc_service

Depth level

0

0

Low
Vulnera-
bilities

0

1

Unkown
Vulnera-
bilities

0

13

Open-source
Vulnerability
Fixes

0

2

Critical
Vulnerabilities

0

9

High
Vulnerabilities

0

1

2

3

0

1

0

0

14

36

3

1

7

13

4

21

4

5

0

0

1

0

7

1

0

0

3

1

3

0

Medium
VulnerabilitiesProject name

Direct Dependecies

Transitive Dependencies

Transitive Dependencies

Transitive Dependencies

Transitive Dependencies

6

Total

0 00 0 0 0

1 271 6 33 29

Transitive Dependencies

Number of Fixed vulnerabilities in later versions

Not All Vulnerability Fixes Can be Applied Easily

Open-source developers do provide fixes for these
vulnerabilities. Lineaje tools automatically discover
the fixes revealing that 71 of the 73 have versions
that fix these vulnerabilities. Two medium
vulnerabilities do not have fixes.

Upgrading transitive dependencies-like
many AppSec tools do-will frequently break
the direct dependency needlessly increasing
developer effort.

These transitive dependencies with fixes can potentially break the direct open-source dependencies they are
embedded in. Enterprise developers cannot recertify their direct dependencies with new transitive
dependency versions, nor do their existing tools give them clear dependency information.

© 2024 Lineaje. All Rights Reserved. 35

0

1

tc_service

Depth level

0

0

Low
Vulnera-
bilities

0

1

Unkown
Vulnera-
bilities

0

10

Open-source
Vulnerability
Fixes

0

2

Critical
Vulnerabilities

0

6

High
Vulnerabilities

0

1

2

3

0

1

1

0

13

27

2

0

6

9

4

17

4

5

0

0

0

0

5

2

0

0

3

2

2

0

Medium
VulnerabilitiesProject name

Direct Dependecies

Transitive Dependencies

Transitive Dependencies

Transitive Dependencies

Transitive Dependencies

6

Total

0 00 0 0 0

1 257 4 26 24

Transitive Dependencies

Number of Fixed vulnerabilities
Compatible Direct Dependency Patching

Software Structure-based Vulnerability Fixes Are “Almost” Free

A smarter approach is to upgrade direct open-source dependencies to compatible but fixed versions. This is a
complex analysis but modern tools like Lineaje can do that using Lineaje AI.

The benefit of this approach is that 14 of the
vulnerabilities (2 critical, 7 high) can be eliminated
with a simple PR request with minimal effort from
developers. This is about a 20% drop in
vulnerabilities making the application more secure.

20% of all vulnerabilities were eliminated by
simple compatible upgrades of direct
open-source dependencies without
complex prioritization and dev effort.

© 2024 Lineaje. All Rights Reserved. 36

0

1

tc_service

Depth level

0

0

Low
Vulnera-
bilities

0

1

Unkown
Vulnera-
bilities

0

3

Open-source
Vulnerability
Fixes

0

0

Critical
Vulnerabilities

0

2

High
Vulnerabilities

0

0

2

3

0

1

0

0

0

4

0

0

0

1

0

2

4

5

0

0

0

1

5

1

0

0

2

0

3

0

Medium
VulnerabilitiesProject name

Direct Dependecies

Transitive Dependencies

Transitive Dependencies

Transitive Dependencies

Transitive Dependencies

6

Total

0 00 0 0 0

1 213 0 5 5

Transitive Dependencies

Number of unfixed vulnerabilities

Incompatible Direct Dependency Patching Delivers Large Vulnerability
Reduction

Multiple direct dependency changes are incompatible with each other and with private code that embeds
them. Grouping all incompatible direct dependencies and retesting the entire set once is much more efficient.

Applying 12 patches for 13 new “most secure” versions of the direct dependencies fixes 60 of the 73
vulnerabilities. This leaves 13 transitive vulnerabilities that are not fixed. These are “High Risk” fixes for
vulnerabilities. Even though available, they have not been picked up by the direct open-source dependencies.

Enterprise developers picking these up risk expensive direct dependency recertification efforts. These should
be taken up very carefully. A better approach is to backport these fixes to compatible versions of these
transitive dependencies and use those backported versions.

Lineaje AI Remediate not only highlights compatible and incompatible versions of fixed components but
also shows which incompatible, transitive upgrades your developers should not fix but backport.

Critical Facts About Lineaje You Can't Afford to
Ignore

© 2024 Lineaje. All Rights Reserved. 37

Anonymous

Lineaje AI Search:
A simple query in Lineaje AI Search
can discover components with the
most anonymous code written after a
geopolitical event from a country
involved in that geopolitical event.

20% of American contributors
choose to remain anonymous, twice
the ratio of Russian contributors and
three times that of Chinese
contributors.

Global
Lineaje Open-source Crawler:
The Lineaje Open-source Crawler
autonomously gathers the
geo-provenance of all open-source
components used, tracking down to
individual commits and authors. This
enables comprehensive control of
your entire software supply chain by
geographic location.

United States contributors commit
more code to open-source projects
than those from any other country,
with Russia following closely.

Unattested

Lineaje Attestation Engine
automatically attests to the integrity
of each Open-source and private
component in your application and
alerts you on any component that is
not fully trustable.

5%-8% of components in
open-source dependencies of any
application are unknown, tampered
with or are of dubious-origin.

Deep

Lineaje Dependency Crawler
technology creates the deepest
supply chain dependency tree in the
industry.

Open-source embeds 20-60 layers
of components from dozens of
open-source organizations
assembled in a complex LEGO-like
structure in a single dependency
your developers include in your
application.

Pervasive

Lineaje Unified Scanner Hub can
extend your AppSec tools to scan the
source code and packages of ALL
your open-source dependencies that
existing AppSec and next-gen SCA
tools cannot do on their own.

Open-source contributes two to nine
times the code your developers
write.

© 2024 Lineaje. All Rights Reserved. 38

Critical Facts About Lineaje You Can't Afford to
Ignore

Unmaintained

Lineaje Open Source Manager
automatically segments your
open-source into unmaintained,
maintained, and well-maintained
open-source depndencies and drives
workflows and remediation that is
appropriate for each category of
open-source.

Shockingly, unmaintained
open-source is less vulnerable than
well-maintained open-source which
is 1.8 times more vulnerable, and
mid-sized teams represent the least
risky projects.

Version Sprawl

Lineaje Assessment Engine
automatically detects version sprawl
in private, third-party and
open-source dependencies in your
application and recommends the
most compatible and secure version
with a click.

More than 15% of components have
multiple versions in a single
application.

Polyglot

Lineaje AI Plan can discover all
languages used in your
dependencies and in your code and
make recommendations on language
“substitution” to create a more
secure applications.

A mid-sized application, on average,
pulls in 1.4 million lines of code in
139 languages and drags in more
risky memory-unsafe languages.

Vulnerable

Lineaje AI Remediate not only
highlights compatible and
incompatible versions of fixed
components but also shows which
incompatible, transitive upgrades
your developers should not fix but
backport.

95% of all vulnerabilities come from
your open-source dependencies.
Knowing which your developers can
fix, and which they should not,
eliminates at least 50% of
vulnerability fix effort.

Learn more about Lineaje

View another report, "What’s in Your Open Source Software?"
An Approach to Enhance Software Supply Chain Security demonstrated by
a deep analysis of the Apache Software Foundation

Explore Lineaje's blog for valuble insights on software supply chain
security, open-source management, and the latest industry developments.

See a demo to discover how Lineaje can help enhance your organization's
security posture.

Download Todayhttps://www.lineaje.com/research-paper-form?utm_medium=pdf&utm_source=report&utm_campaign=24q4rpt-open-source�

Read Morehttps://www.lineaje.com/blog?utm_medium=pdf&utm_source=report&utm_campaign=24q4rpt-open-source�

Schedule Demohttps://www.lineaje.com/schedule-demo?utm_medium=pdf&utm_source=report&utm_campaign=24q4rpt-open-source�

© 2024 Lineaje. All Rights Reserved. 39

LIN
EAJE AI LABS

	Resource Wrapper.pdf
	Forcepoint Special Report WRAPPED.pdf
	Forcepoint Special Report Cyber EO Six Month Progress

	illuminating-the-increasing-global-open-source-software-supply-chain.pdf

