)" VOLTRON DATA Carahsoft

383 Ibis Expressions and the
Only Language You Need is One

aaaaaaaa

Thank you for downloading this Voltron Data resource. Carahsoft is the distributor
for Voltron Data's Al and ML solutions available via NASA SEWP V, ITES-SW2, NASPO

ValuePoint, and many more contract vehicles.

To learn how to take the next step toward acquiring Voltron Data's solutions, please
check out the following resources and information:

For Voltron Data overview: For upcoming events:
carah.io/Voltron-Data carah.io/Voltron-Events

For additional resources: For additional Artificial Intelligence:
carah.io/Voltron-Resources carah.io/ai-solutions

To set up a meeting: To purchase, check out the contract

vehicles available for procurement:

VoltronData@carahsoft.com
carah.io/procurement

For more information, contact Carahsoft or our reseller partners:

VoltronData@carahsoft.com | 888-606-2770

mailto:redhat@carahsoft.com
https://www.carah.io/Voltron-Resources
https://www.carah.io/Voltron-Events
https://www.carah.io/procurement
https://www.carah.io/ai-solutions
https://www.carah.io/voltron-data

Feb 23, 2023

383 Ibis Expressions and the Only Language You Need is One

Keith Britt, Phillip Cloud, Jim Crist-Harif

@ TL;DR Ibis is a Python library that allows you to write data access and manipulation
code once, without having to worry about porting it to new systems, which can save
programmers time/stress and reduce the need for multiple, specialized personnel.

According to the official Ibis Project page, “Ibis is a Python framework to access data and
perform analytical computations from different sources, in a standard way.” But we can
reframe Ibis in a more pithy form: Ibis circumvents all the syntax requirements of accessing
data from different sources. As a Python programmer, it makes your life so much easier,
because you only need to learn Ibis (a Python package) and you don’t need to learn and
remember all the variations of data languages used to access and manipulate data in
databases.

How nice would it be to just do all your programming using Python instead of having to
understand and manipulate the programming infrastructure of all the data sources you’re
connecting to? It would be very nice (elegant as well) and that’s what Ibis provides for you.

https://ibis-project.org/
https://ibis-project.org/install/

The first question you might ask is, what backends does Ibis support? Good question, with
an easy answer. The backends currently supported in Ibis 4.1 are:

Y
g trino e 4
Sesnowfloke |+ cricktouse
',SQI ite @ B3 Cuery
N
S Ibis
M‘ Polars @DASK
i @* DuckDB
. . - MHS&
& 5l server il pandas

The first three (Impala, ClickHouse, Big Query) work the same as they turn the Python
instructions you write into strings that are then executed as queries using the respective
engines. The latter eleven (Dask, Datafusion, DuckDB, MS SQL Server, Polars, MySQL,
PostgreSQL, PySpark, SQLite, Snowflake, and Trino) translate your Python instructions
directly into API-specific languages provided by the execution engines. A final backend,
pandas, directly executes the backend, as Pandas is a Python library.

The second question you might ask is, what are the expressions for all these backends that
are executable by Ibis? Well, let’s take a look using some code examples. First, let’s just
import the necessary packages and do some basic setup:
PYTHON
import ibis

import os

import ibis.expr.operationes as ops

ibis.options.interactive -

Now, let’s just take a look at the number of operations in the dictionary of Ibis expressions:

PYTHON
print(len(eps. __dict__J})
= F83

383 operations are supported across all 15 backends. Not all the expressions are
supported in each backend, however. Some of the expressions are supported in justa
couple of backends, while others are supported across all sixteen. Likewise, the full API for
each expression-generating backend is not fully implemented in Ibis, with varying degrees
of coverage. The API coverage in |bis spans a large range from 21% in DataFusion to 84% in
Postgres. For a full breakdown of the APl and expression coverages, see the table at ibis-

project.org.

Let’s take a look at how two expressions vary across backends, and how lbis helps you
avoid the complexity associated with moving between different data managers.
Trim

trim is a function that exists in most modern databases. It goes by different names—strip—
for example. In lbis, the string APl is modeled after the methods on Python’s str object, so
it’s fittingly called strip.

trim may seem like a trivial thing to abstract over, but it turns out that there are some non-
trivial differences in the behavior and spelling of the various databases’ implementation of
this function.

Postgres and DuckDB

Postgres and DuckDB both spell this function the same way:

JEK

SELECT trim(some_string])

The function accepts a second argument that is the set of characters to strip from either
end of the string:

PYTHON

SELECT trim(some_string. "abe’)

Note that if any of 'a), 'b’, or 'c' are at either end of some_string then all of the matching
strings will be trimmed. Here’s DuckDB:

https://ibis-project.org/backends/_support_matrix/
https://ibis-project.org/backends/_support_matrix/

JEK

D SELECT trim('abcdefcba”, "obc’);

moin.trim(’obcdefcba’. "abc') |
varchar |

def |

MySQL

MySQL takes a different approach. The function name is the same (trim), but the syntax
and meaning of arguments are very different from the Postgres/DuckDB approach.

To replicate the same function call in MySQL as the DuckDB example above we have to
jump through some hoops:

SELECT TRIM(EOTH 'c’ FROM TRIM[BOTH "k’ . FROM TRIM(EOTH 'o" FROM scme_string]))

With Ibis, you use a single expression and it handles the syntax conversion for you during

execution:
PYTHON
» £ = ibis.table(dict({some_string="string")]. name="1")
=» gxpr = t.some_string.strip().name("stripped™)
»»» ibis.show_sql(expr, diolect="duckdb™)
BELECT
TRIM(®
", t0.some_string) A8 stripped
FROM t AS 0O
Now for MySQL.:
PYTHOMN

= ibis.show_sql{expr, dialect="mysgl"™)

BELECT
TRIM[BOTH *
" FROM TRIM(BOTH °
" FROM TRIM(EOTH ° " FROM TRIM(EOTH °
* FROM TRIM(EOTH ° " FROM TRIM{EOTH ° ° FROM (

t@.some_string

11111)) A8 stripped

FROM t AB t0

You’re probably wondering what the heck all the whitespace is. They are the ASCII-defined

whitespace characters, which is what strip removes.

Unnest

Moving to more advanced features, we have unnest which turns a column of array values

into a flattened column of scalar values. For example, here’s an implementation in lbis:

arroy<string=

|

I

| ["fa". "B, ... +1]

| @

|]

| ['b.]

L I
In [18]: t.arr.unnest(]
Out [16]

— A

| arr |

-

| string |

e

| = |

| B |

| e |

| b |

| @

The syntax for this operation differs wildly across backends. Here’s a sampling:

DuckDB: SELECT unnest(arr)

PYTHON

e Postgres: SELECT unnest(arr)

e Snowflake: SELECT arr FROM FLATTEN(input => t.arr) arr

e BigQuery: SELECT arr FROM t CROSS JOIN UNNEST(arr) AS arr

o PySpark: F.explode(t.arr)

So, the story is even more complicated, but again |bis saves the day here and captures the

variation in most of the supported backends:

DuckDB

BELECT
UNNEBT(t2.arr) A8 arr
FROM t AS t0

Postgres

BELECT
UNNEBT(t0.arr) A8 arr
FROM t AS t0O

Snowflake

BELECT
CABT(MULLIF(anon_%.valus, ") A8 TEXT) A8 arr
FROM t AS t0O
JOIN LATERAL FLATTEM(
INPUT -> (
BPLIT(

ARRAY_TO_STRING(t8.arr, "bl54bB27FfddcAfEEb11f7334d67dbb11"]),

'bl1Edb@27 FddcdFEBEDLLIf7334d67 dbb1l”
il
18
MODE == "ARRAY'
)] AB ancon_1

ON T

Whew, that last one is a doozy! Ibis even takes care of handling nulls the same way across
backends so that as you scale up or down you don’t see a change in UNNEST’s behavior.

That leads to some slightly more complex SQL, but peace of mind as you transition
between systems.

Just from these simple examples, we can see that without Ibis, an institution could easily
need multiple developers to collaborate to move from one computational code base to
another or from one database management system to another. Ibis puts the power to easily
migrate in the hands of a single programmer and the code changes are rudimentary. Not
too shabby for an open-source software project, eh?

Get started with Ibis, by visiting ibis-project.org’s install page, and be sure to visit the
excellent tutorial Ibis for SQL Programmers that will walk you step-by-step through getting
started with Ibis. Of course, what we do here at Voltron Data is help people stand up and
optimize their use of Ibis, Arrow, and other open-source systems so if we can be of any

help, please check out our enterprise support options.

https://ibis-project.org/install/
https://ibis-project.org/ibis-for-sql-programmers/
https://ibis-project.org/
https://arrow.apache.org/
https://voltrondata.com/subscription

	Voltron Data Cover Wrapper Template.pdf
	383 Ibis Expressions .pdf

